Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A jump-type SDE approach to real-valued self-similar Markov processes


Author: Leif Döring
Journal: Trans. Amer. Math. Soc. 367 (2015), 7797-7836
MSC (2010): Primary 60G18; Secondary 60G55
DOI: https://doi.org/10.1090/S0002-9947-2015-06270-9
Published electronically: February 18, 2015
MathSciNet review: 3391900
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In his 1972 paper, John Lamperti characterized all positive self-similar Markov processes as time-changes of exponentials of Lévy processes. In the past decade the problem of representing all non-negative self-similar Markov processes that do not necessarily have zero as a trap has been solved gradually via connections to ladder height processes and excursion theory.

Motivated by a recent article of Chaumont, Panti, and Rivero, we represent via jump-type SDEs the symmetric real-valued self-similar Markov processes that only decrease the absolute value by jumps and leave zero continuously.

Our construction of these self-similar processes involves a pseudo excursion construction and singular stochastic calculus arguments ensuring that solutions to the SDEs spend zero time at zero to avoid problems caused by a ``bang-bang'' drift.


References [Enhancements On Off] (What's this?)

  • [1] David Aldous, Stopping times and tightness, Ann. Probability 6 (1978), no. 2, 335-340. MR 0474446 (57 #14086)
  • [2] David Applebaum, Lévy processes and stochastic calculus, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 116, Cambridge University Press, Cambridge, 2009. MR 2512800 (2010m:60002)
  • [3] Mátyás Barczy and Leif Döring, On entire moments of self-similar Markov processes, Stoch. Anal. Appl. 31 (2013), no. 2, 191-198. MR 3021485, https://doi.org/10.1080/07362994.2013.741397
  • [4] Richard F. Bass, Krzysztof Burdzy, and Zhen-Qing Chen, Pathwise uniqueness for a degenerate stochastic differential equation, Ann. Probab. 35 (2007), no. 6, 2385-2418. MR 2353392 (2009c:60144), https://doi.org/10.1214/009117907000000033
  • [5] J. Berestycki, L. Döring, L. Mytnik and L. Zambotti, On existence and uniqueness for self-similar SDEs driven by stable processes, arXiv:1111.4388 (2012)
  • [6] Jean Bertoin and Maria-Emilia Caballero, Entrance from $ 0+$ for increasing semi-stable Markov processes, Bernoulli 8 (2002), no. 2, 195-205. MR 1895890 (2003c:60071)
  • [7] Jean Bertoin and Mladen Savov, Some applications of duality for Lévy processes in a half-line, Bull. Lond. Math. Soc. 43 (2011), no. 1, 97-110. MR 2765554 (2011k:60168), https://doi.org/10.1112/blms/bdq084
  • [8] Jean Bertoin and Marc Yor, The entrance laws of self-similar Markov processes and exponential functionals of Lévy processes, Potential Anal. 17 (2002), no. 4, 389-400. MR 1918243 (2003i:60082), https://doi.org/10.1023/A:1016377720516
  • [9] Jean Bertoin and Marc Yor, On the entire moments of self-similar Markov processes and exponential functionals of Lévy processes, Ann. Fac. Sci. Toulouse Math. (6) 11 (2002), no. 1, 33-45 (English, with English and French summaries). MR 1986381 (2004d:60119)
  • [10] Jean Bertoin and Marc Yor, Exponential functionals of Lévy processes, Probab. Surv. 2 (2005), 191-212. MR 2178044 (2007b:60116), https://doi.org/10.1214/154957805100000122
  • [11] R. M. Blumenthal, On construction of Markov processes, Z. Wahrsch. Verw. Gebiete 63 (1983), no. 4, 433-444. MR 705615 (84j:60081), https://doi.org/10.1007/BF00533718
  • [12] M. E. Caballero and L. Chaumont, Weak convergence of positive self-similar Markov processes and overshoots of Lévy processes, Ann. Probab. 34 (2006), no. 3, 1012-1034. MR 2243877 (2008c:60035), https://doi.org/10.1214/009117905000000611
  • [13] Loïc Chaumont, Henry Pantí, and Víctor Rivero, The Lamperti representation of real-valued self-similar Markov processes, Bernoulli 19 (2013), no. 5B, 2494-2523. MR 3160562, https://doi.org/10.3150/12-BEJ460
  • [14] Loïc Chaumont, Andreas Kyprianou, Juan Carlos Pardo, and Víctor Rivero, Fluctuation theory and exit systems for positive self-similar Markov processes, Ann. Probab. 40 (2012), no. 1, 245-279. MR 2917773, https://doi.org/10.1214/10-AOP612
  • [15] Oleksandr Chybiryakov, The Lamperti correspondence extended to Lévy processes and semi-stable Markov processes in locally compact groups, Stochastic Process. Appl. 116 (2006), no. 5, 857-872. MR 2218339 (2006m:60058), https://doi.org/10.1016/j.spa.2005.11.009
  • [16] Claude Dellacherie and Paul-André Meyer, Probabilités et potentiel. Chapitres V à VIII, Théorie des martingales. [Martingale theory], Revised edition, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], vol. 1385, Hermann, Paris, 1980 (French). MR 566768 (82b:60001)
  • [17] Leif Döring and Mátyás Barczy, A jump type SDE approach to positive self-similar Markov processes, Electron. J. Probab. 17 (2012), no. 94, 39. MR 2994842
  • [18] Stewart N. Ethier and Thomas G. Kurtz, Markov processes, Characterization and convergence, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons Inc., New York, 1986. MR 838085 (88a:60130)
  • [19] P. J. Fitzsimmons, On the existence of recurrent extensions of self-similar Markov processes, Electron. Comm. Probab. 11 (2006), 230-241. MR 2266714 (2008h:60143), https://doi.org/10.1214/ECP.v11-1222
  • [20] Zongfei Fu and Zenghu Li, Stochastic equations of non-negative processes with jumps, Stochastic Process. Appl. 120 (2010), no. 3, 306-330. MR 2584896 (2011d:60178), https://doi.org/10.1016/j.spa.2009.11.005
  • [21] Nobuyuki Ikeda and Shinzo Watanabe, Stochastic differential equations and diffusion processes, North-Holland Mathematical Library, vol. 24, North-Holland Publishing Co., Amsterdam, 1981. MR 637061 (84b:60080)
  • [22] Jean Jacod and Albert N. Shiryaev, Limit theorems for stochastic processes, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288, Springer-Verlag, Berlin, 2003. MR 1943877 (2003j:60001)
  • [23] Ioannis Karatzas and Steven E. Shreve, Brownian motion and stochastic calculus, 2nd ed., Graduate Texts in Mathematics, vol. 113, Springer-Verlag, New York, 1991. MR 1121940 (92h:60127)
  • [24] Sun Wah Kiu, Two dimensional semi-stable Markov processes, Ann. Probability 3 (1975), no. 3, 440-448. MR 0388563 (52 #9399)
  • [25] Sun Wah Kiu, Semistable Markov processes in $ {\bf R}^{n}$, Stochastic Process. Appl. 10 (1980), no. 2, 183-191. MR 587423 (82g:60098), https://doi.org/10.1016/0304-4149(80)90020-4
  • [26] A. Kuznetsov and J. C. Pardo, Fluctuations of stable processes and exponential functionals of hypergeometric Lévy processes, Acta Appl. Math. 123 (2013), 113-139. MR 3010227, https://doi.org/10.1007/s10440-012-9718-y
  • [27] John Lamperti, Semi-stable Markov processes. I, Z. Wahrsch. Verw. Gebiete 22 (1972), 205-225. MR 0307358 (46 #6478)
  • [28] Zenghu Li and Fei Pu, Strong solutions of jump-type stochastic equations, Electron. Commun. Probab. 17 (2012), no. 33, 13. MR 2965746, https://doi.org/10.1214/ECP.v17-1915
  • [29] Pierre Patie, Exponential functional of a new family of Lévy processes and self-similar continuous state branching processes with immigration, Bull. Sci. Math. 133 (2009), no. 4, 355-382 (English, with English and French summaries). MR 2532690 (2010j:60118), https://doi.org/10.1016/j.bulsci.2008.10.001
  • [30] Philip E. Protter, Stochastic integration and differential equations, Stochastic Modelling and Applied Probability, 2nd ed., Applications of Mathematics (New York), vol. 21, Springer-Verlag, Berlin, 2004. MR 2020294 (2005k:60008)
  • [31] Daniel Revuz and Marc Yor, Continuous martingales and Brownian motion, 3rd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, Springer-Verlag, Berlin, 1999. MR 1725357 (2000h:60050)
  • [32] Víctor Rivero, Recurrent extensions of self-similar Markov processes and Cramér's condition, Bernoulli 11 (2005), no. 3, 471-509. MR 2146891 (2006d:60118), https://doi.org/10.3150/bj/1120591185
  • [33] Víctor Rivero, Recurrent extensions of self-similar Markov processes and Cramér's condition. II, Bernoulli 13 (2007), no. 4, 1053-1070. MR 2364226 (2008k:60173), https://doi.org/10.3150/07-BEJ6082
  • [34] Ken-iti Sato, Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University Press, Cambridge, 1999. Translated from the 1990 Japanese original; Revised by the author. MR 1739520 (2003b:60064)
  • [35] Toshio Yamada and Shinzo Watanabe, On the uniqueness of solutions of stochastic differential equations., J. Math. Kyoto Univ. 11 (1971), 155-167. MR 0278420 (43 #4150)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 60G18, 60G55

Retrieve articles in all journals with MSC (2010): 60G18, 60G55


Additional Information

Leif Döring
Affiliation: Laboratoire de Probabilités et Modèles Aléatoires, Université Paris VI, 4, Place Jussieu, 75005 Paris, France
Email: leif.doering@googlemail.com

DOI: https://doi.org/10.1090/S0002-9947-2015-06270-9
Received by editor(s): October 27, 2012
Received by editor(s) in revised form: August 9, 2013
Published electronically: February 18, 2015
Additional Notes: The author was supported by the Fondation Science Matématiques de Paris
Article copyright: © Copyright 2015 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society