Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Endomorphism algebras of factors of certain hypergeometric Jacobians


Authors: Jiangwei Xue and Chia-Fu Yu
Journal: Trans. Amer. Math. Soc. 367 (2015), 8071-8106
MSC (2010): Primary 14H40, 11G15
DOI: https://doi.org/10.1090/tran/6330
Published electronically: April 3, 2015
MathSciNet review: 3391910
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We classify the endomorphism algebras of factors of the Jacobians of certain hypergeometric curves over a field of characteristic zero. Other than a few exceptional cases, the endomorphism algebras turn out to be either a cyclotomic field $ E=\mathbb{Q}(\zeta _q)$, or a quadratic extension of $ E$, or $ E\oplus E$. This result may be viewed as a generalization of the well known results of the classification of endomorphism algebras of elliptic curves over $ \mathbb{C}$.


References [Enhancements On Off] (What's this?)

  • [1] Yves André, $ G$-functions and geometry, Aspects of Mathematics, E13, Friedr. Vieweg & Sohn, Braunschweig, 1989. MR 990016 (90k:11087)
  • [2] Noboru Aoki, Simple factors of the Jacobian of a Fermat curve and the Picard number of a product of Fermat curves, Amer. J. Math. 113 (1991), no. 5, 779-833. MR 1129293 (92m:14057), https://doi.org/10.2307/2374786
  • [3] Christina Birkenhake and Herbert Lange, Complex abelian varieties, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302, Springer-Verlag, Berlin, 2004. MR 2062673 (2005c:14001)
  • [4] J. W. S. Cassels, The arithmetic of certain quartic curves, Proc. Roy. Soc. Edinburgh Sect. A 100 (1985), no. 3-4, 201-218. MR 807702 (86m:11017), https://doi.org/10.1017/S0308210500013779
  • [5] Paula Cohen and Jürgen Wolfart, Modular embeddings for some nonarithmetic Fuchsian groups, Acta Arith. 56 (1990), no. 2, 93-110. MR 1075639 (92d:11039)
  • [6] Robert F. Coleman, Torsion points on curves, Galois representations and arithmetic algebraic geometry (Kyoto, 1985/Tokyo, 1986), Adv. Stud. Pure Math., vol. 12, North-Holland, Amsterdam, 1987, pp. 235-247. MR 948246 (89d:11050)
  • [7] Johan de Jong and Rutger Noot, Jacobians with complex multiplication, Arithmetic algebraic geometry (Texel, 1989) Progr. Math., vol. 89, Birkhäuser Boston, Boston, MA, 1991, pp. 177-192. MR 1085259 (92d:11063)
  • [8] Pierre Deligne, Travaux de Shimura, Séminaire Bourbaki, 23ème année (1970/71), Exp. No. 389, Springer, Berlin, 1971, pp. 123-165. Lecture Notes in Math., Vol. 244 (French). MR 0498581 (58 #16675)
  • [9] Gerhard Frey, Ernst Kani, and Helmut Völklein, Curves with infinite $ K$-rational geometric fundamental group, Aspects of Galois theory (Gainesville, FL, 1996) London Math. Soc. Lecture Note Ser., vol. 256, Cambridge Univ. Press, Cambridge, 1999, pp. 85-118. MR 1708603 (2001c:14047)
  • [10] J. Guàrdia, Explicit geometry on a family of curves of genus 3, J. London Math. Soc. (2) 64 (2001), no. 2, 299-310. MR 1853452 (2002f:11075), https://doi.org/10.1112/S0024610701002538
  • [11] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157 (57 #3116)
  • [12] Fumio Hazama, Hodge cycles on the Jacobian variety of the Catalan curve, Compositio Math. 107 (1997), no. 3, 339-353. MR 1458755 (98d:11065), https://doi.org/10.1023/A:1000106427229
  • [13] J. W. P. Hirschfeld, G. Korchmáros, and F. Torres, Algebraic curves over a finite field, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2008. MR 2386879 (2008m:14040)
  • [14] Neal Koblitz and David Rohrlich, Simple factors in the Jacobian of a Fermat curve, Canad. J. Math. 30 (1978), no. 6, 1183-1205. MR 511556 (80d:14022), https://doi.org/10.4153/CJM-1978-099-6
  • [15] Ja Kyung Koo, On holomorphic differentials of some algebraic function field of one variable over $ {\bf C}$, Bull. Austral. Math. Soc. 43 (1991), no. 3, 399-405. MR 1107394 (92e:14019), https://doi.org/10.1017/S0004972700029245
  • [16] Serge Lang, Algebraic number theory, 2nd ed., Graduate Texts in Mathematics, vol. 110, Springer-Verlag, New York, 1994. MR 1282723 (95f:11085)
  • [17] Serge Lang, Algebra, 3rd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. MR 1878556 (2003e:00003)
  • [18] J. S. Milne, Jacobian varieties, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 167-212. MR 861976
  • [19] Shinichi Mochizuki, Topics in absolute anabelian geometry I: generalities, J. Math. Sci. Univ. Tokyo 19 (2012), no. 2, 139-242. MR 2987306
  • [20] B. Moonen and F. Oort.
    The torelli locus and special subvarieties.
    In G. Farkas and I. Morrison, editors, The Handbook of Moduli, volume II, pages 545-590. International Press, Boston, MA, 2012.
    to appear.
  • [21] David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Published for the Tata Institute of Fundamental Research, Bombay, 2008. With appendices by C. P. Ramanujam and Yuri Manin; Corrected reprint of the second (1974) edition. MR 2514037 (2010e:14040)
  • [22] Frans Oort, Canonical liftings and dense sets of CM-points, Arithmetic geometry (Cortona, 1994) Sympos. Math., XXXVII, Cambridge Univ. Press, Cambridge, 1997, pp. 228-234. MR 1472499 (98g:14056)
  • [23] Richard Pink, A combination of the conjectures of Mordell-Lang and André-Oort, Geometric methods in algebra and number theory, Progr. Math., vol. 235, Birkhäuser Boston, Boston, MA, 2005, pp. 251-282. MR 2166087 (2006f:11068), https://doi.org/10.1007/0-8176-4417-2_11
  • [24] Joseph J. Rotman, Advanced modern algebra, Graduate Studies in Mathematics, vol. 114, American Mathematical Society, Providence, RI, 2010. Second edition [of MR2043445]. MR 2674831
  • [25] Goro Shimura, Abelian varieties with complex multiplication and modular functions, Princeton Mathematical Series, vol. 46, Princeton University Press, Princeton, NJ, 1998. MR 1492449 (99e:11076)
  • [26] Joseph H. Silverman, The arithmetic of elliptic curves, 2nd ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR 2514094 (2010i:11005)
  • [27] Christopher Towse, Weierstrass points on cyclic covers of the projective line, Trans. Amer. Math. Soc. 348 (1996), no. 8, 3355-3378. MR 1357406 (96k:14024), https://doi.org/10.1090/S0002-9947-96-01649-2
  • [28] Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575 (97h:11130)
  • [29] Jürgen Wolfart, Werte hypergeometrischer Funktionen, Invent. Math. 92 (1988), no. 1, 187-216 (German, with English summary). MR 931211 (89g:11063), https://doi.org/10.1007/BF01393999
  • [30] Jiangwei Xue, Endomorphism algebras of Jacobians of certain superelliptic curves, J. Number Theory 131 (2011), no. 2, 332-342. MR 2910215 (2012m:11087), https://doi.org/10.1016/j.jnt.2010.07.013
  • [31] Yuri G. Zarhin, The endomorphism rings of Jacobians of cyclic covers of the projective line, Math. Proc. Cambridge Philos. Soc. 136 (2004), no. 2, 257-267. MR 2040573 (2004m:11088), https://doi.org/10.1017/S0305004103007102
  • [32] Yuri G. Zarhin, Endomorphism algebras of superelliptic Jacobians, Geometric methods in algebra and number theory, Progr. Math., vol. 235, Birkhäuser Boston, Boston, MA, 2005, pp. 339-362. MR 2166091 (2006g:11117), https://doi.org/10.1007/0-8176-4417-2_15
  • [33] Yuri G. Zarhin, Superelliptic Jacobians, Diophantine geometry, CRM Series, vol. 4, Ed. Norm., Pisa, 2007, pp. 363-390. MR 2349666 (2009h:14076)
  • [34] Yuri G. Zarhin, Endomorphisms of superelliptic Jacobians, Math. Z. 261 (2009), no. 3, 691-707. MR 2471095, https://doi.org/10.1007/s00209-008-0342-5

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 14H40, 11G15

Retrieve articles in all journals with MSC (2010): 14H40, 11G15


Additional Information

Jiangwei Xue
Affiliation: Institute of Mathematics, Academia Sinica, 6F, Astronomy-Mathematics Building, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, Republic of China
Address at time of publication: Collaborative Innovation Centre of Mathematics, School of Mathematics and Statistics, Wuhan University, Luojiashan, Wuhan, Hubei, People’s Republic of China, 430072
Email: xue_j@math.sinica.edu.tw, xue_j@whu.edu.cn

Chia-Fu Yu
Affiliation: Institute of Mathematics, Academia Sinica, 6F, Astronomy-Mathematics Building, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, Republic of China
Email: chiafu@math.sinica.edu.tw

DOI: https://doi.org/10.1090/tran/6330
Keywords: Hypergeometric curves, endomorphism algebras, Jacobians
Received by editor(s): April 23, 2013
Received by editor(s) in revised form: April 25, 2013, and September 4, 2013
Published electronically: April 3, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society