Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Fox reimbedding and Bing submanifolds


Author: Kei Nakamura
Journal: Trans. Amer. Math. Soc. 367 (2015), 8325-8346
MSC (2010): Primary 57N10, 57M27; Secondary 57N12, 57M50
DOI: https://doi.org/10.1090/tran/6044
Published electronically: September 1, 2015
MathSciNet review: 3403057
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ M$ be an orientable closed connected $ 3$-manifold. We introduce the notion of an amalgamated Heegaard genus of $ M$ with respect to a closed separating $ 2$-manifold $ F$, and use it to show that the following two statements are equivalent: (i) a compact connected 3-manifold $ Y$ can be embedded in $ M$ so that the exterior of the image of $ Y$ is a union of handlebodies; and (ii) a compact connected $ 3$-manifold $ Y$ can be embedded in $ M$ so that every knot in $ M$ can be isotoped to lie within the image of $ Y$.

Our result can be regarded as a common generalization of the reimbedding theorem by Fox (1948) and the characterization of $ 3$-sphere by Bing (1958), as well as more recent results of Hass and Thompson (1989) and Kobayashi and Nishi (1994).


References [Enhancements On Off] (What's this?)

  • [Bin58] R. H. Bing, Necessary and sufficient conditions that a $ 3$-manifold be $ S^{3}$, Ann. of Math. (2) 68 (1958), 17-37. MR 0095471 (20 #1973)
  • [BZ84] M. Boileau and H. Zieschang, Heegaard genus of closed orientable Seifert $ 3$-manifolds, Invent. Math. 76 (1984), no. 3, 455-468. MR 746538 (86a:57008), https://doi.org/10.1007/BF01388469
  • [CG83] A. J. Casson and C. McA. Gordon, Reducing Heegaard splittings, preprint, 1983.
  • [CG87] A. J. Casson and C. McA. Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987), no. 3, 275-283. MR 918537 (89c:57020), https://doi.org/10.1016/0166-8641(87)90092-7
  • [Fox48] Ralph H. Fox, On the imbedding of polyhedra in $ 3$-space, Ann. of Math. (2) 49 (1948), 462-470. MR 0026326 (10,138c)
  • [GM85] C. McA. Gordon and J. M. Montesinos, Fibered knots with disks with clasps, M.S.R.I. preprint, 1985.
  • [Hak68] Wolfgang Haken, Some results on surfaces in $ 3$-manifolds, Studies in Modern Topology, Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.), 1968, pp. 39-98. MR 0224071 (36 #7118)
  • [HT89] Joel Hass and Abigail Thompson, A necessary and sufficient condition for a $ 3$-manifold to have Heegaard genus one, Proc. Amer. Math. Soc. 107 (1989), no. 4, 1107-1110. MR 984792 (90c:57010), https://doi.org/10.2307/2047674
  • [HS01] Chuichiro Hayashi and Koya Shimokawa, Thin position of a pair (3-manifold, 1-submanifold), Pacific J. Math. 197 (2001), no. 2, 301-324. MR 1815259 (2002b:57020), https://doi.org/10.2140/pjm.2001.197.301
  • [KN94] Tsuyoshi Kobayashi and Haruko Nishi, A necessary and sufficient condition for a $ 3$-manifold to have genus $ g$ Heegaard splitting (a proof of Hass-Thompson conjecture), Osaka J. Math. 31 (1994), no. 1, 109-136. MR 1262792 (96b:57020)
  • [KR06] Tsuyoshi Kobayashi and Yo'av Rieck, Heegaard genus of the connected sum of $ m$-small knots, Comm. Anal. Geom. 14 (2006), no. 5, 1037-1077. MR 2287154 (2007i:57018)
  • [Li13] Tao Li, Rank and genus of 3-manifolds, J. Amer. Math. Soc. 26 (2013), no. 3, 777-829. MR 3037787, https://doi.org/10.1090/S0894-0347-2013-00767-5
  • [Lop93] L. M. Lopez, Small knots in Seifert fibered $ 3$-manifolds, Math. Z. 212 (1993), no. 1, 123-139. MR 1200167 (94c:57012), https://doi.org/10.1007/BF02571644
  • [Mat04] Hiroshi Matsuda, Small knots in some closed Haken 3-manifolds, Topology Appl. 135 (2004), no. 1-3, 149-183. MR 2024953 (2004m:57044), https://doi.org/10.1016/S0166-8641(03)00161-5
  • [McM61] D. R. McMillan Jr., On homologically trivial $ 3$-manifolds, Trans. Amer. Math. Soc. 98 (1961), 350-367. MR 0120639 (22 #11389)
  • [MT89] W. Menasco and A. Thompson, Compressing handlebodies with holes, Topology 28 (1989), no. 4, 485-494. MR 1030989 (91b:57010), https://doi.org/10.1016/0040-9383(89)90007-4
  • [Mye78] Robert Myers, Open book decompositions of $ 3$-manifolds, Proc. Amer. Math. Soc. 72 (1978), no. 2, 397-402. MR 507346 (80a:57004), https://doi.org/10.2307/2042814
  • [Mye82] Robert Myers, Simple knots in compact, orientable $ 3$-manifolds, Trans. Amer. Math. Soc. 273 (1982), no. 1, 75-91. MR 664030 (83h:57018), https://doi.org/10.2307/1999193
  • [QW04] Ruifeng Qiu and Shicheng Wang, Simple, small knots in handlebodies, Topology Appl. 144 (2004), no. 1-3, 211-227. MR 2097137 (2006a:57008), https://doi.org/10.1016/j.topol.2004.04.007
  • [Rie07] Yo'av Rieck, A short proof of Bing's characterization of $ S^3$, Proc. Amer. Math. Soc. 135 (2007), no. 6, 1947-1948 (electronic). MR 2286108 (2007k:57029), https://doi.org/10.1090/S0002-9939-07-08657-1
  • [Rub78] J. H. Rubinstein, One-sided Heegaard splittings of $ 3$-manifolds, Pacific J. Math. 76 (1978), no. 1, 185-200. MR 0488064 (58 #7635)
  • [SSS05] T. Saito, M. Scharlemann, and J. Schultens, Lecture notes on generalized Heegaard splittings, preprint, 2005.
  • [Sch92] Martin Scharlemann, Handlebody complements in the $ 3$-sphere: a remark on a theorem of Fox, Proc. Amer. Math. Soc. 115 (1992), no. 4, 1115-1117. MR 1116272 (92j:57004), https://doi.org/10.2307/2159364
  • [ST05] Martin Scharlemann and Abigail Thompson, Surfaces, submanifolds, and aligned Fox reimbedding in non-Haken 3-manifolds, Proc. Amer. Math. Soc. 133 (2005), no. 6, 1573-1580 (electronic). MR 2120271 (2005j:57029), https://doi.org/10.1090/S0002-9939-04-07704-4
  • [Sch93] Jennifer Schultens, The classification of Heegaard splittings for (compact orientable surface) $ \,\times \, S^1$, Proc. London Math. Soc. (3) 67 (1993), no. 2, 425-448. MR 1226608 (94d:57043), https://doi.org/10.1112/plms/s3-67.2.425
  • [SW07] Jennifer Schultens and Richard Weidman, On the geometric and the algebraic rank of graph manifolds, Pacific J. Math. 231 (2007), no. 2, 481-510. MR 2346507 (2009a:57030), https://doi.org/10.2140/pjm.2007.231.481
  • [Wal78] Friedhelm Waldhausen, Some problems on $ 3$-manifolds, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 313-322. MR 520549 (80g:57013)
  • [Wei03] Richard Weidmann, Some 3-manifolds with 2-generated fundamental group, Arch. Math. (Basel) 81 (2003), no. 5, 589-595. MR 2029721 (2004j:57033), https://doi.org/10.1007/s00013-003-4742-9

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 57N10, 57M27, 57N12, 57M50

Retrieve articles in all journals with MSC (2010): 57N10, 57M27, 57N12, 57M50


Additional Information

Kei Nakamura
Affiliation: Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122
Address at time of publication: Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08901
Email: nakamura@temple.edu

DOI: https://doi.org/10.1090/tran/6044
Received by editor(s): February 18, 2012
Received by editor(s) in revised form: August 24, 2012, and December 2, 2012
Published electronically: September 1, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society