Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The quantum Gromov-Hausdorff propinquity


Author: Frédéric Latrémolière
Journal: Trans. Amer. Math. Soc. 368 (2016), 365-411
MSC (2010): Primary 46L89, 46L30, 58B34
DOI: https://doi.org/10.1090/tran/6334
Published electronically: May 22, 2015
MathSciNet review: 3413867
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce the quantum Gromov-Hausdorff propinquity, a new distance between quantum compact metric spaces, which extends the Gromov-Hausdorff distance to noncommutative geometry and strengthens Rieffel's
quantum Gromov-Hausdorff distance and Rieffel's proximity by making
*-isomorphism a necessary condition for distance zero, while being well adapted to Leibniz seminorms. This work offers a natural solution to the long-standing problem of finding a framework for the development of a theory of Leibniz Lip-norms over C*-algebras.


References [Enhancements On Off] (What's this?)

  • [1] Erik M. Alfsen and Frederic W. Shultz, State spaces of operator algebras, Basic theory, orientations, and $ C^*$-products. Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 2001. MR 1828331 (2002h:46100)
  • [2] Bruce E. Blackadar, Weak expectations and nuclear $ C^{\ast } $-algebras, Indiana Univ. Math. J. 27 (1978), no. 6, 1021-1026. MR 511256 (80d:46110), https://doi.org/10.1512/iumj.1978.27.27070
  • [3] B. Blackadar and J. Cuntz, Differential Banach algebra norms and smooth subalgebras of $ C^*$-algebras, J. Operator Theory 26 (1991), no. 2, 255-282. MR 1225517 (94f:46094)
  • [4] Etienne Blanchard, Subtriviality of continuous fields of nuclear $ C^*$-algebras, J. Reine Angew. Math. 489 (1997), 133-149. MR 1461207 (98d:46072), https://doi.org/10.1515/crll.1997.489.133
  • [5] Alain Connes, $ C^{\ast } $ algèbres et géométrie différentielle, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 13, A599-A604 (French, with English summary). MR 572645 (81c:46053)
  • [6] A. Connes, Compact metric spaces, Fredholm modules, and hyperfiniteness, Ergodic Theory Dynam. Systems 9 (1989), no. 2, 207-220. MR 1007407 (90i:46124), https://doi.org/10.1017/S0143385700004934
  • [7] Alain Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. MR 1303779 (95j:46063)
  • [8] Alain Connes, Michael R. Douglas, and Albert Schwarz, Noncommutative geometry and matrix theory: compactification on tori, J. High Energy Phys. 2 (1998), Paper 3, 35 pp. (electronic). MR 1613978 (99b:58023), https://doi.org/10.1088/1126-6708/1998/02/003
  • [9] Alain Connes and Michel Dubois-Violette, Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples, Comm. Math. Phys. 230 (2002), no. 3, 539-579. MR 1937657 (2004a:58006), https://doi.org/10.1007/s00220-002-0715-2
  • [10] Alain Connes and Giovanni Landi, Noncommutative manifolds, the instanton algebra and isospectral deformations, Comm. Math. Phys. 221 (2001), no. 1, 141-159. MR 1846904 (2003i:58014), https://doi.org/10.1007/PL00005571
  • [11] R. L. Dobrushin, Prescribing a system of random variables by conditional probabilities, Theory of Probability and its Applications 15 (1970), no. 3, 459-486.
  • [12] Sergio Doplicher, Klaus Fredenhagen, and John E. Roberts, The quantum structure of spacetime at the Planck scale and quantum fields, Comm. Math. Phys. 172 (1995), no. 1, 187-220. MR 1346376 (96f:81068)
  • [13] R. M. Dudley, Real analysis and probability, Cambridge Studies in Advanced Mathematics, vol. 74, Cambridge University Press, Cambridge, 2002. Revised reprint of the 1989 original. MR 1932358 (2003h:60001)
  • [14] David A. Edwards, The structure of superspace, Studies in topology (Proc. Conf., Univ. North Carolina, Charlotte, N. C., 1974; dedicated to Math. Sect. Polish Acad. Sci.), Academic Press, New York, 1975, pp. 121-133. MR 0401069 (53 #4898)
  • [15] George A. Elliott and David E. Evans, The structure of the irrational rotation $ C^*$-algebra, Ann. of Math. (2) 138 (1993), no. 3, 477-501. MR 1247990 (94j:46066), https://doi.org/10.2307/2946553
  • [16] V. Gayral, J. M. Gracia-Bondía, B. Iochum, T. Schücker, and J. C. Várilly, Moyal planes are spectral triples, Comm. Math. Phys. 246 (2004), no. 3, 569-623. MR 2053945 (2005f:58045), https://doi.org/10.1007/s00220-004-1057-z
  • [17] Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53-73. MR 623534 (83b:53041)
  • [18] Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, vol. 152, Birkhäuser Boston, Inc., Boston, MA, 1999. Based on the 1981 French original [MR0682063 (85e:53051)]; With appendices by M. Katz, P. Pansu and S. Semmes; Translated from the French by Sean Michael Bates. MR 1699320 (2000d:53065)
  • [19] Uffe Haagerup and Mikael Rørdam, Perturbations of the rotation $ C^\ast $-algebras and of the Heisenberg commutation relation, Duke Math. J. 77 (1995), no. 3, 627-656. MR 1324637 (96e:46073), https://doi.org/10.1215/S0012-7094-95-07720-5
  • [20] R. Høegh-Krohn, M. B. Landstad, and E. Størmer, Compact ergodic groups of automorphisms, Ann. of Math. (2) 114 (1981), no. 1, 75-86. MR 625345 (82i:46097), https://doi.org/10.2307/1971377
  • [21] Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Vol. III, Birkhäuser Boston, Inc., Boston, MA, 1991. Special topics; Elementary theory--an exercise approach. MR 1134132 (92m:46084)
  • [22] Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Vol. I, Graduate Studies in Mathematics, vol. 15, American Mathematical Society, Providence, RI, 1997. Elementary theory; Reprint of the 1983 original. MR 1468229 (98f:46001a)
  • [23] L. V. Kantorovich, On one effective method of solving certain classes of extremal problems, Dokl. Akad. Nauk. USSR 28 (1940), 212-215.
  • [24] L. V. Kantorovič and G. Š. Rubinšteĭn, On a space of completely additive functions, Vestnik Leningrad. Univ. 13 (1958), no. 7, 52-59 (Russian, with English summary). MR 0102006 (21 #808)
  • [25] David Kerr, Matricial quantum Gromov-Hausdorff distance, J. Funct. Anal. 205 (2003), no. 1, 132-167. MR 2020211 (2004m:46153), https://doi.org/10.1016/S0022-1236(03)00195-2
  • [26] David Kerr and Hanfeng Li, On Gromov-Hausdorff convergence for operator metric spaces, J. Operator Theory 62 (2009), no. 1, 83-109. MR 2520541 (2010h:46087)
  • [27] N. P. Landsman, Mathematical topics between classical and quantum mechanics, Springer Monographs in Mathematics, Springer-Verlag, New York, 1998. MR 1662141 (2000g:81081)
  • [28] Frédéric Latrémolière, Approximation of quantum tori by finite quantum tori for the quantum Gromov-Hausdorff distance, J. Funct. Anal. 223 (2005), no. 2, 365-395. MR 2142343 (2006d:46092), https://doi.org/10.1016/j.jfa.2005.01.003
  • [29] Frédéric Latrémolière, Bounded-Lipschitz distances on the state space of a $ C^*$-algebra, Taiwanese J. Math. 11 (2007), no. 2, 447-469. MR 2333358 (2008g:46121)
  • [30] Frédéric Latrémolière, Quantum locally compact metric spaces, J. Funct. Anal. 264 (2013), no. 1, 362-402. MR 2995712, https://doi.org/10.1016/j.jfa.2012.10.016
  • [31] H. Li, $ C^\ast $-algebraic quantum Gromov-Hausdorff distance, (2003), arXiv: math.OA/0312003.
  • [32] Hanfeng Li, $ \theta $-deformations as compact quantum metric spaces, Comm. Math. Phys. 256 (2005), no. 1, 213-238. MR 2134342 (2006e:46079), https://doi.org/10.1007/s00220-005-1318-5
  • [33] Hanfeng Li, Order-unit quantum Gromov-Hausdorff distance, J. Funct. Anal. 231 (2006), no. 2, 312-360. MR 2195335 (2006k:46119), https://doi.org/10.1016/j.jfa.2005.03.016
  • [34] B. Morariu and B. Zumino, Super Yang-Mills on the noncommutative torus, Relativity, particle physics and cosmology (College Station, TX, 1998), World Sci. Publ., River Edge, NJ, 1999, pp. 53-69. MR 1703799 (2001b:58013)
  • [35] Nathan Seiberg and Edward Witten, String theory and noncommutative geometry, J. High Energy Phys. 9 (1999), Paper 32, 93 pp. (electronic). MR 1720697 (2001i:81237), https://doi.org/10.1088/1126-6708/1999/09/032
  • [36] Narutaka Ozawa and Marc A. Rieffel, Hyperbolic group $ C^*$-algebras and free-product $ C^*$-algebras as compact quantum metric spaces, Canad. J. Math. 57 (2005), no. 5, 1056-1079. MR 2164594 (2006e:46080), https://doi.org/10.4153/CJM-2005-040-0
  • [37] Branka Pavlović, Defining metric spaces via operators from unital $ C^*$-algebras, Pacific J. Math. 186 (1998), no. 2, 285-313. MR 1663810 (99m:46162), https://doi.org/10.2140/pjm.1998.186.285
  • [38] Marc A. Rieffel, Metrics on states from actions of compact groups, Doc. Math. 3 (1998), 215-229 (electronic). MR 1647515 (99k:46126)
  • [39] Marc A. Rieffel, Metrics on state spaces, Doc. Math. 4 (1999), 559-600 (electronic). MR 1727499 (2001g:46154)
  • [40] Marc A. Rieffel, Group $ C^*$-algebras as compact quantum metric spaces, Doc. Math. 7 (2002), 605-651 (electronic). MR 2015055 (2004k:22009)
  • [41] Marc A. Rieffel, Matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance, Gromov-Hausdorff distance for quantum metric spaces. Matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance. Mem. Amer. Math. Soc. 168 (2004), no. 796, 67-91. MR 2055928, https://doi.org/10.1090/memo/0796
  • [42] Marc A. Rieffel, Distances between matrix algebras that converge to coadjoint orbits, Superstrings, geometry, topology, and $ C^\ast $-algebras, Proc. Sympos. Pure Math., vol. 81, Amer. Math. Soc., Providence, RI, 2010, pp. 173-180. MR 2681764 (2011j:46126), https://doi.org/10.1090/pspum/081/2681764
  • [43] Marc A. Rieffel, Leibniz seminorms for ``matrix algebras converge to the sphere'', Quanta of maths, Clay Math. Proc., vol. 11, Amer. Math. Soc., Providence, RI, 2010, pp. 543-578. MR 2732064 (2011j:46125)
  • [44] Marc A. Rieffel, Vector bundles and Gromov-Hausdorff distance, J. K-Theory 5 (2010), no. 1, 39-103. MR 2600284 (2011c:53085), https://doi.org/10.1017/is008008014jkt080
  • [45] Marc A. Rieffel, Leibniz seminorms and best approximation from $ C^*$-subalgebras, Sci. China Math. 54 (2011), no. 11, 2259-2274. MR 2859693 (2012k:46088), https://doi.org/10.1007/s11425-011-4318-2
  • [46] Marc A. Rieffel, Standard deviation is a strongly Leibniz seminorm, New York J. Math. 20 (2014), 35-56. MR 3159395
  • [47] Marc A. Rieffel, Gromov-Hausdorff distance for quantum metric spaces. Matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance, Mem. Amer. Math. Soc. 168 (2004), no. 796. American Mathematical Society, Providence, RI, 2004. MR 2055926 (2005g:46131)
  • [48] Gerard 't Hooft, Determinism beneath quantum mechanics, Quo vadis quantum mechanics?, Front. Coll., Springer, Berlin, 2005, pp. 99-111. MR 2180016 (2006f:81013), https://doi.org/10.1007/3-540-26669-0_8
  • [49] L. N. Wasserstein, Markov processes on a countable product space, describing large systems of automata, Problemy Peredachi Infomatsii 5 (1969), no. 3, 64-73, In Russian.
  • [50] Nik Weaver, Lipschitz algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 1999. MR 1832645 (2002g:46002)
  • [51] J. Wheeler, Supersuper and the nature of quantum geometrodynamics, Battelle rencontres. 1967 Lectures in mathematics and physics (DeWitt C. and J. Wheeler, eds.), 1968.
  • [52] Wei Wu, Non-commutative metrics on matrix state spaces, J. Ramanujan Math. Soc. 20 (2005), no. 3, 215-254. MR 2181130 (2008c:46108)
  • [53] Wei Wu, Non-commutative metric topology on matrix state space, Proc. Amer. Math. Soc. 134 (2006), no. 2, 443-453 (electronic). MR 2176013 (2006f:46072), https://doi.org/10.1090/S0002-9939-05-08036-6
  • [54] Wei Wu, Quantized Gromov-Hausdorff distance, J. Funct. Anal. 238 (2006), no. 1, 58-98. MR 2234123 (2007h:46088), https://doi.org/10.1016/j.jfa.2005.02.017

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 46L89, 46L30, 58B34

Retrieve articles in all journals with MSC (2010): 46L89, 46L30, 58B34


Additional Information

Frédéric Latrémolière
Affiliation: Department of Mathematics, University of Denver, Denver, Colorado 80208
Email: frederic@math.du.edu

DOI: https://doi.org/10.1090/tran/6334
Keywords: Noncommutative metric geometry, quantum Gromov-Hausdorff distance, Monge-Kantorovich distance, quantum metric spaces, Lip-norms, compact C*-metric spaces, Leibniz seminorms, quantum tori, finite dimensional approximations.
Received by editor(s): November 6, 2013
Published electronically: May 22, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society