Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Acylindrically hyperbolic groups


Author: D. Osin
Journal: Trans. Amer. Math. Soc. 368 (2016), 851-888
MSC (2010): Primary 20F67, 20F65
DOI: https://doi.org/10.1090/tran/6343
Published electronically: May 22, 2015
MathSciNet review: 3430352
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We say that a group $ G$ is acylindrically hyperbolic if it admits a non-elementary acylindrical action on a hyperbolic space. We prove that the class of acylindrically hyperbolic groups coincides with many other classes studied in the literature, e.g., the class $ C_{geom}$ introduced by Hamenstädt, the class of groups admitting a non-elementary weakly properly discontinuous action on a hyperbolic space in the sense of Bestvina and Fujiwara, and the class of groups with hyperbolically embedded subgroups studied by Dahmani, Guirardel, and the author. We also record some basic results about acylindrically hyperbolic groups for future use.


References [Enhancements On Off] (What's this?)

  • [1] Y. Antolin, A. Minasyan, A. Sisto, Commensurating endomorphisms of acylindrically hyperbolic groups and applications, arXiv:1310.8605.
  • [2] Uri Bader, Alex Furman, and Roman Sauer, Weak notions of normality and vanishing up to rank in $ L^2$-cohomology, Int. Math. Res. Not. IMRN 12 (2014), 3177-3189. MR 3217658
  • [3] Jason Behrstock, Cornelia Druţu, and Lee Mosher, Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity, Math. Ann. 344 (2009), no. 3, 543-595. MR 2501302 (2010h:20094), https://doi.org/10.1007/s00208-008-0317-1
  • [4] M. Bachir Bekka and Pierre de la Harpe, Groups with simple reduced $ C^*$-algebras, Expo. Math. 18 (2000), no. 3, 215-230. MR 1763888 (2001j:46078)
  • [5] M. Bestvina, K. Bromberg, K. Fujiwara, Bounded cohomology via quasi-trees, arXiv:1306.1542.
  • [6] Mladen Bestvina and Mark Feighn, A hyperbolic $ {\rm Out}(F_n)$-complex, Groups Geom. Dyn. 4 (2010), no. 1, 31-58. MR 2566300 (2011a:20052), https://doi.org/10.4171/GGD/74
  • [7] Mladen Bestvina and Koji Fujiwara, Bounded cohomology of subgroups of mapping class groups, Geom. Topol. 6 (2002), 69-89 (electronic). MR 1914565 (2003f:57003), https://doi.org/10.2140/gt.2002.6.69
  • [8] Brian H. Bowditch, Tight geodesics in the curve complex, Invent. Math. 171 (2008), no. 2, 281-300. MR 2367021 (2008m:57040), https://doi.org/10.1007/s00222-007-0081-y
  • [9] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486 (2000k:53038)
  • [10] Marc Burger and Pierre de la Harpe, Constructing irreducible representations of discrete groups, Proc. Indian Acad. Sci. Math. Sci. 107 (1997), no. 3, 223-235. MR 1467427 (98k:22022), https://doi.org/10.1007/BF02867253
  • [11] Danny Calegari, scl, MSJ Memoirs, vol. 20, Mathematical Society of Japan, Tokyo, 2009. MR 2527432 (2011b:57003)
  • [12] Pierre-Emmanuel Caprace and Michah Sageev, Rank rigidity for CAT(0) cube complexes, Geom. Funct. Anal. 21 (2011), no. 4, 851-891. MR 2827012 (2012i:20049), https://doi.org/10.1007/s00039-011-0126-7
  • [13] Ionut Chifan and Thomas Sinclair, On the structural theory of $ {\rm II}_1$ factors of negatively curved groups, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), no. 1, 1-33 (2013) (English, with English and French summaries). MR 3087388
  • [14] M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes, Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups]; with an English summary, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin, 1990 (French). MR 1075994 (92f:57003)
  • [15] R. Coulon, Small cancellation theory and Burnside problem, arXiv:1302.6933.
  • [16] F. Dahmani, V. Guirardel, D. Osin, Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, arXiv:1111.7048.
  • [17] Cornelia Druţu and Mark Sapir, Tree-graded spaces and asymptotic cones of groups, with an appendix by Denis Osin and Sapir, Topology 44 (2005), no. 5, 959-1058. MR 2153979 (2006d:20078), https://doi.org/10.1016/j.top.2005.03.003
  • [18] Martin J. Dunwoody, An inaccessible group, Geometric group theory, Vol. 1 (Sussex, 1991) London Math. Soc. Lecture Note Ser., vol. 181, Cambridge Univ. Press, Cambridge, 1993, pp. 75-78. MR 1238516 (94i:20067), https://doi.org/10.1017/CBO9780511661860.007
  • [19] Edward G. Effros, Property $ \Gamma $ and inner amenability, Proc. Amer. Math. Soc. 47 (1975), 483-486. MR 0355626 (50 #8100)
  • [20] F. T. Farrell and L. E. Jones, The lower algebraic $ K$-theory of virtually infinite cyclic groups, $ K$-Theory 9 (1995), no. 1, 13-30. MR 1340838 (96e:19003), https://doi.org/10.1007/BF00965457
  • [21] É. Ghys and P. de la Harpe (eds.), Sur les groupes hyperboliques d'après Mikhael Gromov (French). Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988, Progress in Mathematics, vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1990. MR 1086648 (92f:53050)
  • [22] M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75-263. MR 919829 (89e:20070), https://doi.org/10.1007/978-1-4613-9586-7_3
  • [23] M. Gromov, $ {\rm CAT}(\kappa )$-spaces: construction and concentration, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 280 (2001), Geom. i Topol. 7, 100-140, 299-300 (English, with Russian summary); English transl., J. Math. Sci. (N. Y.) 119 (2004), no. 2, 178-200, DOI 10.1023/B:JOTH.0000008756.15786.0f. MR 1879258 (2002j:53045)
  • [24] Daniel Groves and Jason Fox Manning, Dehn filling in relatively hyperbolic groups, Israel J. Math. 168 (2008), 317-429. MR 2448064 (2009h:57030), https://doi.org/10.1007/s11856-008-1070-6
  • [25] Ursula Hamenstädt, Bounded cohomology and isometry groups of hyperbolic spaces, J. Eur. Math. Soc. (JEMS) 10 (2008), no. 2, 315-349. MR 2390326 (2009d:53050), https://doi.org/10.4171/JEMS/112
  • [26] Ursula Hamenstädt, Isometry groups of proper hyperbolic spaces, Geom. Funct. Anal. 19 (2009), no. 1, 170-205. MR 2507222 (2010i:53071), https://doi.org/10.1007/s00039-009-0719-6
  • [27] M. Hamann, Group actions on metric spaces: fixed points and free subgroups, arXiv:1301.6513.
  • [28] G. Christopher Hruska, Relative hyperbolicity and relative quasiconvexity for countable groups, Algebr. Geom. Topol. 10 (2010), no. 3, 1807-1856. MR 2684983 (2011k:20086), https://doi.org/10.2140/agt.2010.10.1807
  • [29] M. Hull, Small cancellation in acylindrically hyperbolic groups, arXiv:1308.4345.
  • [30] Michael Hull and Denis Osin, Induced quasicocycles on groups with hyperbolically embedded subgroups, Algebr. Geom. Topol. 13 (2013), no. 5, 2635-2665. MR 3116299, https://doi.org/10.2140/agt.2013.13.2635
  • [31] S. V. Ivanov and A. Yu. Olshanskiĭ, Hyperbolic groups and their quotients of bounded exponents, Trans. Amer. Math. Soc. 348 (1996), no. 6, 2091-2138. MR 1327257 (96m:20057), https://doi.org/10.1090/S0002-9947-96-01510-3
  • [32] Ilya Kapovich and Kasra Rafi, On hyperbolicity of free splitting and free factor complexes, Groups Geom. Dyn. 8 (2014), no. 2, 391-414. MR 3231221, https://doi.org/10.4171/GGD/231
  • [33] Anton A. Klyachko, Alexander Yu. Olshanskii, and Denis V. Osin, On topologizable and non-topologizable groups, Topology Appl. 160 (2013), no. 16, 2104-2120. MR 3106464, https://doi.org/10.1016/j.topol.2013.08.017
  • [34] George W. Mackey, The theory of unitary group representations, based on notes by James M. G. Fell and David B. Lowdenslager of lectures given at the University of Chicago, Chicago, Ill., 1955; Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill.-London, 1976. MR 0396826 (53 #686)
  • [35] Howard A. Masur and Yair N. Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138 (1999), no. 1, 103-149. MR 1714338 (2000i:57027), https://doi.org/10.1007/s002220050343
  • [36] A. Minasyan, D. Osin, Acylindrically hyperbolic groups acting on trees, in preparation.
  • [37] A. Minasyan and D. Osin, Normal automorphisms of relatively hyperbolic groups, Trans. Amer. Math. Soc. 362 (2010), no. 11, 6079-6103. MR 2661509 (2011m:20102), https://doi.org/10.1090/S0002-9947-2010-05067-6
  • [38] Nicolas Monod, Continuous bounded cohomology of locally compact groups, Lecture Notes in Mathematics, vol. 1758, Springer-Verlag, Berlin, 2001. MR 1840942 (2002h:46121)
  • [39] Nicolas Monod and Yehuda Shalom, Orbit equivalence rigidity and bounded cohomology, Ann. of Math. (2) 164 (2006), no. 3, 825-878. MR 2259246 (2007k:37007), https://doi.org/10.4007/annals.2006.164.825
  • [40] A. Yu. Olshanskiĭ, On residualing homomorphisms and $ G$-subgroups of hyperbolic groups, Internat. J. Algebra Comput. 3 (1993), no. 4, 365-409. MR 1250244 (94i:20069), https://doi.org/10.1142/S0218196793000251
  • [41] Alexander Yu. Olshanskii, Denis V. Osin, and Mark V. Sapir, with an appendix by Michael Kapovich and Bruce Kleiner, Lacunary hyperbolic groups, Geom. Topol. 13 (2009), no. 4, 2051-2140. MR 2507115 (2010i:20045), https://doi.org/10.2140/gt.2009.13.2051
  • [42] Denis Osin, Small cancellations over relatively hyperbolic groups and embedding theorems, Ann. of Math. (2) 172 (2010), no. 1, 1-39. MR 2680416 (2012a:20068), https://doi.org/10.4007/annals.2010.172.1
  • [43] Denis V. Osin, Peripheral fillings of relatively hyperbolic groups, Invent. Math. 167 (2007), no. 2, 295-326. MR 2270456 (2008d:20080), https://doi.org/10.1007/s00222-006-0012-3
  • [44] Denis V. Osin, Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc. 179 (2006), no. 843, vi+100. MR 2182268 (2006i:20047), https://doi.org/10.1090/memo/0843
  • [45] Sorin Popa, Deformation and rigidity for group actions and von Neumann algebras, International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, pp. 445-477. MR 2334200 (2008k:46186), https://doi.org/10.4171/022-1/18
  • [46] Z. Sela, Acylindrical accessibility for groups, Invent. Math. 129 (1997), no. 3, 527-565. MR 1465334 (98m:20045), https://doi.org/10.1007/s002220050172
  • [47] Saharon Shelah, Classification of first order theories which have a structure theorem, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 2, 227-232. MR 776474 (86h:03058), https://doi.org/10.1090/S0273-0979-1985-15354-6
  • [48] A. Sisto, Contracting elements and random walks, arXiv:1112.2666.
  • [49] A. Sisto, Quasi-convexity of hyperbolically embedded subgroups, arXiv:1310.7753.
  • [50] Andreas Thom, Low degree bounded cohomology and $ L^2$-invariants for negatively curved groups, Groups Geom. Dyn. 3 (2009), no. 2, 343-358. MR 2486803 (2010h:22030), https://doi.org/10.4171/GGD/60
  • [51] Frank Wagner, Stable groups, Handbook of algebra, Vol. 2, North-Holland, Amsterdam, 2000, pp. 277-318. MR 1759598 (2001k:03073), https://doi.org/10.1016/S1570-7954(00)80030-3

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 20F67, 20F65

Retrieve articles in all journals with MSC (2010): 20F67, 20F65


Additional Information

D. Osin
Affiliation: Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240
Email: denis.v.osin@vanderbilt.edu

DOI: https://doi.org/10.1090/tran/6343
Received by editor(s): April 8, 2013
Received by editor(s) in revised form: November 8, 2013, and December 4, 2013
Published electronically: May 22, 2015
Additional Notes: This work was supported by NSF grant DMS-1006345 and by RFBR grant 11-01-00945
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society