Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Fibered stable varieties


Author: Zsolt Patakfalvi
Journal: Trans. Amer. Math. Soc. 368 (2016), 1837-1869
MSC (2010): Primary 14J10; Secondary 14J40
DOI: https://doi.org/10.1090/tran/6386
Published electronically: June 15, 2015
MathSciNet review: 3449226
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if a stable variety (in the sense of Kollár and Shepherd-Barron) admits a fibration with stable fibers and base, then this fibration structure deforms (uniquely) for all small deformations. During our proof we obtain a Bogomolov-Sommese type vanishing for vector bundles and reflexive differential $ n-1$-forms as well.


References [Enhancements On Off] (What's this?)

  • [AH11] Dan Abramovich and Brendan Hassett, Stable varieties with a twist, Classification of algebraic varieties, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, pp. 1-38. MR 2779465 (2012c:14023), https://doi.org/10.4171/007-1/1
  • [AV02] Dan Abramovich and Angelo Vistoli, Compactifying the space of stable maps, J. Amer. Math. Soc. 15 (2002), no. 1, 27-75 (electronic). MR 1862797 (2002i:14030), https://doi.org/10.1090/S0894-0347-01-00380-0
  • [Ale96] Valery Alexeev, Moduli spaces $ M_{g,n}(W)$ for surfaces, Higher-dimensional complex varieties (Trento, 1994) de Gruyter, Berlin, 1996, pp. 1-22. MR 1463171 (99b:14010)
  • [BHPS13] Bhargav Bhatt, Wei Ho, Zsolt Patakfalvi, and Christian Schnell, Moduli of products of stable varieties, Compos. Math. 149 (2013), no. 12, 2036-2070. MR 3143705, https://doi.org/10.1112/S0010437X13007288
  • [Bro12] Sylvain Brochard, Finiteness theorems for the Picard objects of an algebraic stack, Adv. Math. 229 (2012), no. 3, 1555-1585. MR 2871149, https://doi.org/10.1016/j.aim.2011.12.011
  • [Cat91] Fabrizio Catanese, Moduli and classification of irregular Kaehler manifolds (and algebraic varieties) with Albanese general type fibrations, Invent. Math. 104 (1991), no. 2, 263-289. MR 1098610 (92f:32049), https://doi.org/10.1007/BF01245076
  • [Cat00] Fabrizio Catanese, Fibred surfaces, varieties isogenous to a product and related moduli spaces, Amer. J. Math. 122 (2000), no. 1, 1-44. MR 1737256 (2001i:14048)
  • [DJ74] Philippe Dubois and Pierre Jarraud, Une propriété de commutation au changement de base des images directes supérieures du faisceau structural, C. R. Acad. Sci. Paris Sér. A 279 (1974), 745-747 (French). MR 0376678 (51 #12853)
  • [EV92] Hélène Esnault and Eckart Viehweg, Lectures on vanishing theorems, DMV Seminar, vol. 20, Birkhäuser Verlag, Basel, 1992. MR 1193913 (94a:14017)
  • [Fuj12] O. Fujino, Semi-positivity theorems for moduli problems, preprint (2012).
  • [GKKP11] Daniel Greb, Stefan Kebekus, Sándor J. Kovács, and Thomas Peternell, Differential forms on log canonical spaces, Publ. Math. Inst. Hautes Études Sci. 114 (2011), 87-169. MR 2854859, https://doi.org/10.1007/s10240-011-0036-0
  • [Gro65] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. 24 (1965), 231 (French). MR 0199181 (33 #7330)
  • [Hall12] Jack Hall, Cohomology and base change for algebraic stacks, Math. Z. 278 (2014), no. 1-2, 401-429. MR 3267585, https://doi.org/10.1007/s00209-014-1321-7
  • [Har77] Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977. MR 0463157 (57 #3116)
  • [Har80] Robin Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980), no. 2, 121-176. MR 597077 (82b:14011), https://doi.org/10.1007/BF01467074
  • [Har94] Robin Hartshorne, Generalized divisors on Gorenstein schemes, Proceedings of Conference on Algebraic Geometry and Ring Theory in honor of Michael Artin, Part III (Antwerp, 1992), 1994, pp. 287-339. MR 1291023 (95k:14008), https://doi.org/10.1007/BF00960866
  • [Har10] Robin Hartshorne, Deformation theory, Graduate Texts in Mathematics, vol. 257, Springer, New York, 2010. MR 2583634 (2011c:14023)
  • [HK04] Brendan Hassett and Sándor J. Kovács, Reflexive pull-backs and base extension, J. Algebraic Geom. 13 (2004), no. 2, 233-247. MR 2047697 (2005b:14028), https://doi.org/10.1090/S1056-3911-03-00331-X
  • [Hor76] Eiji Horikawa, On deformations of holomorphic maps. III, Math. Ann. 222 (1976), no. 3., 275-282. MR 0417458 (54 #5508)
  • [Kaw07] Masayuki Kawakita, Inversion of adjunction on log canonicity, Invent. Math. 167 (2007), no. 1, 129-133. MR 2264806 (2008a:14025), https://doi.org/10.1007/s00222-006-0008-z
  • [Kle80] Steven L. Kleiman, Relative duality for quasicoherent sheaves, Compositio Math. 41 (1980), no. 1, 39-60. MR 578050 (81m:14017)
  • [KSB88] János Kollár and N. I. Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988), no. 2, 299-338. MR 922803 (88m:14022), https://doi.org/10.1007/BF01389370
  • [Kol90] János Kollár, Projectivity of complete moduli, J. Differential Geom. 32 (1990), no. 1, 235-268. MR 1064874 (92e:14008)
  • [Kol08] János Kollár, Is there a topological Bogomolov-Miyaoka-Yau inequality?, Pure Appl. Math. Q. 4 (2008), no. 2, 203-236. MR 2400877 (2009b:14086), https://doi.org/10.4310/PAMQ.2008.v4.n2.a1
  • [Kol10] János Kollár, Moduli of varieties of general type, Handbook of moduli. Vol. II, Adv. Lect. Math. (ALM), vol. 25, Int. Press, Somerville, MA, 2013, pp. 131-157. MR 3184176
  • [Kol13] János Kollár, Singularities of the minimal model program, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, 2013. With a collaboration of Sándor Kovács. MR 3057950
  • [Kol15] János Kollár, Deformations of elliptic Calabi-Yau manifolds (Christopher D. Hacon, Mircea Mustaţă, and Mihnea Popa, eds.), Cambridge Books Online, Cambridge University Press, 2015.
  • [KK10] János Kollár and Sándor J. Kovács, Log canonical singularities are Du Bois, J. Amer. Math. Soc. 23 (2010), no. 3, 791-813. MR 2629988 (2011m:14061), https://doi.org/10.1090/S0894-0347-10-00663-6
  • [KM98] János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959 (2000b:14018)
  • [LMB00] Gérard Laumon and Laurent Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 39, Springer-Verlag, Berlin, 2000 (French). MR 1771927 (2001f:14006)
  • [Laz04a] Robert Lazarsfeld, Positivity in algebraic geometry. I, Classical setting: line bundles and linear series. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. MR 2095471 (2005k:14001a)
  • [Laz04b] Robert Lazarsfeld, Positivity in algebraic geometry. II, Positivity for vector bundles, and multiplier ideals. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. MR 2095472 (2005k:14001b)
  • [Mum66] David Mumford, Lectures on curves on an algebraic surface, With a section by G. M. Bergman. Annals of Mathematics Studies, No. 59, Princeton University Press, Princeton, N.J., 1966. MR 0209285 (35 #187)
  • [Nee96] Amnon Neeman, The Grothendieck duality theorem via Bousfield's techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), no. 1, 205-236. MR 1308405 (96c:18006), https://doi.org/10.1090/S0894-0347-96-00174-9
  • [Ols06] Martin C. Olsson, $ \underline {\rm Hom}$-stacks and restriction of scalars, Duke Math. J. 134 (2006), no. 1, 139-164. MR 2239345 (2007f:14002), https://doi.org/10.1215/S0012-7094-06-13414-2
  • [Pat10] Zsolt Patakfalvi, Arakelov-Parshin rigidity of towers of curve fibrations, Math. Z. 278 (2014), no. 3-4, 859-892. MR 3278895, https://doi.org/10.1007/s00209-014-1336-0
  • [Pat13] Zsolt Patakfalvi, Base change behavior of the relative canonical sheaf related to higher dimensional moduli, Algebra Number Theory 7 (2013), no. 2, 353-378. MR 3123642, https://doi.org/10.2140/ant.2013.7.353
  • [Ps13] Zsolt Patakfalvi and Karl Schwede, Depth of $ F$-singularities and base change of relative canonical sheaves, J. Inst. Math. Jussieu 13 (2014), no. 1, 43-63. MR 3134015, https://doi.org/10.1017/S1474748013000066
  • [Sta] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, 2015.
  • [Vie83] Eckart Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces, Algebraic varieties and analytic varieties (Tokyo, 1981) Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 329-353. MR 715656 (85b:14041)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 14J10, 14J40

Retrieve articles in all journals with MSC (2010): 14J10, 14J40


Additional Information

Zsolt Patakfalvi
Affiliation: Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, New Jersey 08544-1000
Email: pzs@math.princeton.edu

DOI: https://doi.org/10.1090/tran/6386
Received by editor(s): April 13, 2013
Received by editor(s) in revised form: June 20, 2013, September 17, 2013, January 6, 2014, and January 8, 2014
Published electronically: June 15, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society