Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Brauer-Picard group of the Asaeda-Haagerup fusion categories


Authors: Pinhas Grossman and Noah Snyder
Journal: Trans. Amer. Math. Soc. 368 (2016), 2289-2331
MSC (2010): Primary 46L37; Secondary 18D10
DOI: https://doi.org/10.1090/tran/6364
Published electronically: August 18, 2015
MathSciNet review: 3449240
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the Brauer-Picard group of Morita autoequivalences of each of the three fusion categories which arise as an even part of the Asaeda-Haagerup subfactor or of its index 2 extension is the Klein four-group. We describe the 36 bimodule categories which occur in the full subgroupoid of the Brauer-Picard groupoid on these three fusion categories. We also classify all irreducible subfactors both of whose even parts are among these categories, of which there are 111 up to isomorphism of the planar algebra (76 up to duality). Although we identify the entire Brauer-Picard group, there may be additional fusion categories in the groupoid. We prove a partial classification of possible additional fusion categories Morita equivalent to the Asaeda-Haagerup fusion categories and make some conjectures about their existence.


References [Enhancements On Off] (What's this?)

  • [AG11] Marta Asaeda and Pinhas Grossman, A quadrilateral in the Asaeda-Haagerup category, Quantum Topol. 2 (2011), no. 3, 269-300. MR 2812458 (2012f:46126), https://doi.org/10.4171/QT/22
  • [AH99] M. Asaeda and U. Haagerup, Exotic subfactors of finite depth with Jones indices $ (5+\sqrt {13})/2$ and $ (5+\sqrt {17})/2$, Comm. Math. Phys. 202 (1999), no. 1, 1-63. MR 1686551 (2000c:46120), https://doi.org/10.1007/s002200050574
  • [BEK00] Jens Böckenhauer, David E. Evans, and Yasuyuki Kawahigashi, Chiral structure of modular invariants for subfactors, Comm. Math. Phys. 210 (2000), no. 3, 733-784. MR 1777347 (2001k:46097), https://doi.org/10.1007/s002200050798
  • [Bis97] Dietmar Bisch, Bimodules, higher relative commutants and the fusion algebra associated to a subfactor, Operator algebras and their applications (Waterloo, ON, 1994/1995), Fields Inst. Commun., vol. 13, Amer. Math. Soc., Providence, RI, 1997, pp. 13-63. MR 1424954 (97i:46109)
  • [DMNO13] Alexei Davydov, Michael Müger, Dmitri Nikshych, and Victor Ostrik, The Witt group of non-degenerate braided fusion categories, J. Reine Angew. Math. 677 (2013), 135-177. MR 3039775
  • [DR89] Sergio Doplicher and John E. Roberts, A new duality theory for compact groups, Invent. Math. 98 (1989), no. 1, 157-218. MR 1010160 (90k:22005), https://doi.org/10.1007/BF01388849
  • [EGNO] Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik,
    Tensor categories,
    online.
  • [EK98] David E. Evans and Yasuyuki Kawahigashi, Quantum symmetries on operator algebras, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. MR 1642584 (99m:46148)
  • [ENO05] Pavel Etingof, Dmitri Nikshych, and Viktor Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005), no. 2, 581-642. MR 2183279 (2006m:16051), https://doi.org/10.4007/annals.2005.162.581
  • [ENO10] Pavel Etingof, Dmitri Nikshych, and Victor Ostrik, Fusion categories and homotopy theory, with an appendix by Ehud Meir, Quantum Topol. 1 (2010), no. 3, 209-273. MR 2677836 (2011h:18007), https://doi.org/10.4171/QT/6
  • [EO04] Pavel Etingof and Viktor Ostrik, Module categories over representations of $ {\rm SL}_q(2)$ and graphs, Math. Res. Lett. 11 (2004), no. 1, 103-114. MR 2046203 (2005d:20088), https://doi.org/10.4310/MRL.2004.v11.n1.a10
  • [EP09a] David E. Evans and Mathew Pugh, Ocneanu cells and Boltzmann weights for the $ \rm SU(3)$ $ \mathcal {ADE}$ graphs, Münster J. Math. 2 (2009), 95-142. MR 2545609 (2011a:46094)
  • [EP09b] David E. Evans and Mathew Pugh, SU(3)-Goodman-de la Harpe-Jones subfactors and the realization of SU(3) modular invariants, Rev. Math. Phys. 21 (2009), no. 7, 877-928. MR 2553429 (2011a:46095), https://doi.org/10.1142/S0129055X09003761
  • [FS08] Jürgen Fuchs and Carl Stigner, On Frobenius algebras in rigid monoidal categories, Arab. J. Sci. Eng. Sect. C Theme Issues 33 (2008), no. 2, 175-191 (English, with English and Arabic summaries). MR 2500035 (2010g:18010)
  • [GdlHJ89] Frederick M. Goodman, Pierre de la Harpe, and Vaughan F. R. Jones, Coxeter graphs and towers of algebras, Mathematical Sciences Research Institute Publications, vol. 14, Springer-Verlag, New York, 1989. MR 999799 (91c:46082)
  • [GI08] Pinhas Grossman and Masaki Izumi, Classification of noncommuting quadrilaterals of factors, Internat. J. Math. 19 (2008), no. 5, 557-643. MR 2418197 (2010b:46132), https://doi.org/10.1142/S0129167X08004807
  • [GS12] Pinhas Grossman and Noah Snyder, Quantum subgroups of the Haagerup fusion categories, Comm. Math. Phys. 311 (2012), no. 3, 617-643. MR 2909758, https://doi.org/10.1007/s00220-012-1427-x
  • [Izu91] Masaki Izumi, Application of fusion rules to classification of subfactors, Publ. Res. Inst. Math. Sci. 27 (1991), no. 6, 953-994. MR 1145672 (93b:46121), https://doi.org/10.2977/prims/1195169007
  • [Jon] Vaughan F. R. Jones,
    Planar algebras, I,
    arXiv:math.QA/9909027.
  • [Jon83] Vaughan F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1-25. MR 696688 (84d:46097), https://doi.org/10.1007/BF01389127
  • [Jon12] Vaughan F. R. Jones, Quadratic tangles in planar algebras, Duke Math. J. 161 (2012), no. 12, 2257-2295. MR 2972458, https://doi.org/10.1215/00127094-1723608
  • [JS91] André Joyal and Ross Street, The geometry of tensor calculus. I, Adv. Math. 88 (1991), no. 1, 55-112. MR 1113284 (92d:18011), https://doi.org/10.1016/0001-8708(91)90003-P
  • [KO02] Alexander Kirillov Jr. and Viktor Ostrik, On a $ q$-analogue of the McKay correspondence and the ADE classification of $ \mathfrak{sl}_2$ conformal field theories, Adv. Math. 171 (2002), no. 2, 183-227. MR 1936496 (2003j:17019), https://doi.org/10.1006/aima.2002.2072
  • [KW93] David Kazhdan and Hans Wenzl, Reconstructing monoidal categories, I. M. Gelfand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 111-136. MR 1237835 (95e:18007)
  • [Lon94] Roberto Longo, A duality for Hopf algebras and for subfactors. I, Comm. Math. Phys. 159 (1994), no. 1, 133-150. MR 1257245 (95h:46097)
  • [LR97] R. Longo and J. E. Roberts, A theory of dimension, $ K$-Theory 11 (1997), no. 2, 103-159. MR 1444286 (98i:46065), https://doi.org/10.1023/A:1007714415067
  • [MPS11] Scott Morrison, Emily Peters, and Noah Snyder, Knot polynomial identities and quantum group coincidences, Quantum Topol. 2 (2011), no. 2, 101-156. MR 2783128 (2012m:57025), https://doi.org/10.4171/QT/16
  • [Müg03] Michael Müger, From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories, J. Pure Appl. Algebra 180 (2003), no. 1-2, 81-157. MR 1966524 (2004f:18013), https://doi.org/10.1016/S0022-4049(02)00247-5
  • [Ocn88] Adrian Ocneanu, Quantized groups, string algebras and Galois theory for algebras, Operator algebras and applications, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 136, Cambridge Univ. Press, Cambridge, 1988, pp. 119-172. MR 996454 (91k:46068)
  • [Ocn99] Adrian Ocneanu, Paths on Coxeter diagrams: from platonic solids and singularities to minimal models and subfactors.
    In B. V. Rajarama Bhat, George A. Elliott, and Peter A. Fillmore, editors, Lectures on operator theory, volume 13 of Fields Institute Monographs, American Mathematical Society, Providence, RI, 1999.
    MR 1743202.
  • [Ocn01] Adrian Ocneanu, Operator algebras, topology and subgroups of quantum symmetry--construction of subgroups of quantum groups, Taniguchi Conference on Mathematics Nara '98, Adv. Stud. Pure Math., vol. 31, Math. Soc. Japan, Tokyo, 2001, pp. 235-263. MR 1865095 (2002j:57059)
  • [Ocn02] Adrian Ocneanu, The classification of subgroups of quantum $ {\rm SU}(N)$, Quantum symmetries in theoretical physics and mathematics (Bariloche, 2000), Contemp. Math., vol. 294, Amer. Math. Soc., Providence, RI, 2002, pp. 133-159. MR 1907188 (2003h:81101), https://doi.org/10.1090/conm/294/04972
  • [Ost03] Victor Ostrik, Module categories, weak Hopf algebras and modular invariants, Transform. Groups 8 (2003), no. 2, 177-206. MR 1976459 (2004h:18006), https://doi.org/10.1007/s00031-003-0515-6
  • [Pen71] Roger Penrose, Applications of negative dimensional tensors, Combinatorial Mathematics and its Applications (Proc. Conf., Oxford, 1969), Academic Press, London, 1971, pp. 221-244. MR 0281657 (43 #7372)
  • [PP86] Mihai Pimsner and Sorin Popa, Entropy and index for subfactors, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 1, 57-106. MR 860811 (87m:46120)
  • [RT91] N. Reshetikhin and V. G. Turaev, Invariants of $ 3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547-597. MR 1091619 (92b:57024), https://doi.org/10.1007/BF01239527
  • [TW05] Imre Tuba and Hans Wenzl, On braided tensor categories of type $ BCD$, J. Reine Angew. Math. 581 (2005), 31-69. MR 2132671 (2006b:18003), https://doi.org/10.1515/crll.2005.2005.581.31
  • [Yam03] Shigeru Yamagami, $ C^\ast $-tensor categories and free product bimodules, J. Funct. Anal. 197 (2003), no. 2, 323-346. MR 1960417 (2004a:46062), https://doi.org/10.1016/S0022-1236(02)00036-8
  • [Yam04] Shigeru Yamagami, Frobenius algebras in tensor categories and bimodule extensions, Galois theory, Hopf algebras, and semiabelian categories, Fields Inst. Commun., vol. 43, Amer. Math. Soc., Providence, RI, 2004, pp. 551-570. MR 2075605 (2005e:18011)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 46L37, 18D10

Retrieve articles in all journals with MSC (2010): 46L37, 18D10


Additional Information

Pinhas Grossman
Affiliation: School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales 2052, Australia
Email: p.grossman@unsw.edu.au

Noah Snyder
Affiliation: Department of Mathematics, Indiana University, 831 E. Third Street, Bloomington, Indiana 47405
Email: nsnyder@math.columbia.edu

DOI: https://doi.org/10.1090/tran/6364
Keywords: Fusion categories, subfactors, quantum subgroups
Received by editor(s): October 4, 2012
Received by editor(s) in revised form: January 2, 2014
Published electronically: August 18, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society