Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Arithmetic results on orbits of linear groups


Authors: Michael Giudici, Martin W. Liebeck, Cheryl E. Praeger, Jan Saxl and Pham Huu Tiep
Journal: Trans. Amer. Math. Soc. 368 (2016), 2415-2467
MSC (2010): Primary 20B05, 20H30
DOI: https://doi.org/10.1090/tran/6373
Published electronically: August 19, 2015
MathSciNet review: 3449244
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ p$ be a prime and $ G$ a subgroup of $ GL_d(p)$. We define $ G$ to be $ p$-exceptional if it has order divisible by $ p$, but all its orbits on vectors have size coprime to $ p$. We obtain a classification of $ p$-exceptional linear groups. This has consequences for a well-known conjecture in representation theory, and also for a longstanding question concerning $ \frac {1}{2}$-transitive linear groups (i.e. those having all orbits on nonzero vectors of equal length), classifying those of order divisible by $ p$.


References [Enhancements On Off] (What's this?)

  • [1] M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math. 76 (1984), no. 3, 469-514. MR 746539 (86a:20054), https://doi.org/10.1007/BF01388470
  • [2] John Bamberg, Michael Giudici, Martin W. Liebeck, Cheryl E. Praeger, and Jan Saxl, The classification of almost simple $ \frac 32$-transitive groups, Trans. Amer. Math. Soc. 365 (2013), no. 8, 4257-4311. MR 3055696, https://doi.org/10.1090/S0002-9947-2013-05758-3
  • [3] J. van Bon, A. A. Ivanov, and J. Saxl, Affine distance-transitive graphs with sporadic stabilizer, European J. Combin. 20 (1999), no. 2, 163-177. MR 1676190 (2000b:05068), https://doi.org/10.1006/eujc.1998.0268
  • [4] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265. Computational algebra and number theory (London, 1993). MR 1484478, https://doi.org/10.1006/jsco.1996.0125
  • [5] Peter J. Cameron, Peter M. Neumann, and Jan Saxl, On groups with no regular orbits on the set of subsets, Arch. Math. (Basel) 43 (1984), no. 4, 295-296. MR 802301 (87h:20005), https://doi.org/10.1007/BF01196649
  • [6] Roger W. Carter, Finite groups of Lie type, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester, 1993. Conjugacy classes and complex characters; Reprint of the 1985 original; A Wiley-Interscience Publication. MR 1266626 (94k:20020)
  • [7] Arjeh M. Cohen, Kay Magaard, and Sergey Shpectorov, Affine distance-transitive graphs: the cross characteristic case, European J. Combin. 20 (1999), no. 5, 351-373. MR 1702374 (2000j:05128), https://doi.org/10.1006/eujc.1999.0286
  • [8] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219 (88g:20025)
  • [9] C. W. Curtis, Modular representations of finite groups with split $ (B,\,N)$-pairs, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Springer, Berlin, 1970, pp. 57-95. MR 0262383 (41 #6991)
  • [10] Leonard Eugene Dickson, Linear groups: With an exposition of the Galois field theory, with an introduction by W. Magnus, Dover Publications, Inc., New York, 1958. MR 0104735 (21 #3488)
  • [11] Silvio Dolfi, Robert Guralnick, Cheryl E. Praeger, and Pablo Spiga, Coprime subdegrees for primitive permutation groups and completely reducible linear groups, Israel J. Math. 195 (2013), no. 2, 745-772. MR 3096572, https://doi.org/10.1007/s11856-012-0163-4
  • [12] Larry Dornhoff, Group representation theory. Part B: Modular representation theory, Marcel Dekker, Inc., New York, 1972. Pure and Applied Mathematics, 7. MR 0347960 (50 #458b)
  • [13] Walter Feit, The representation theory of finite groups, North-Holland Mathematical Library, vol. 25, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 661045 (83g:20001)
  • [14] A. Gambini Weigel and T. S. Weigel, On the orders of primitive linear $ p'$-groups, Bull. Austral. Math. Soc. 48 (1993), no. 3, 495-521. MR 1248053 (94k:20042), https://doi.org/10.1017/S0004972700015951
  • [15] The GAP group, `GAP - groups, algorithms, and programming', Version 4.4, 2004, http://www.gap-system.org.
  • [16] David Gluck, Kay Magaard, Udo Riese, and Peter Schmid, The solution of the $ k(GV)$-problem, J. Algebra 279 (2004), no. 2, 694-719. MR 2078936 (2005f:20021), https://doi.org/10.1016/j.jalgebra.2004.02.027
  • [17] David Gluck and Thomas R. Wolf, Defect groups and character heights in blocks of solvable groups. II, J. Algebra 87 (1984), no. 1, 222-246. MR 736777 (85c:20008), https://doi.org/10.1016/0021-8693(84)90168-6
  • [18] David Gluck and Thomas R. Wolf, Brauer's height conjecture for $ p$-solvable groups, Trans. Amer. Math. Soc. 282 (1984), no. 1, 137-152. MR 728707 (85i:20014), https://doi.org/10.2307/1999582
  • [19] Dominic P. M. Goodwin, Regular orbits of linear groups with an application to the $ k(GV)$-problem. I, II, J. Algebra 227 (2000), no. 2, 395-432, 433-473. MR 1759829 (2001b:20010), https://doi.org/10.1006/jabr.1998.8078
  • [20] Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups. Number 3. Part I. Chapter A, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1998. Almost simple $ K$-groups. MR 1490581 (98j:20011)
  • [21] Robert M. Guralnick, Generation of simple groups, J. Algebra 103 (1986), no. 1, 381-401. MR 860714 (87j:20029), https://doi.org/10.1016/0021-8693(86)90194-8
  • [22] Robert M. Guralnick and Jan Saxl, Generation of finite almost simple groups by conjugates, J. Algebra 268 (2003), no. 2, 519-571. MR 2009321 (2005f:20057), https://doi.org/10.1016/S0021-8693(03)00182-0
  • [23] Christoph Hering, Transitive linear groups and linear groups which contain irreducible subgroups of prime order. II, J. Algebra 93 (1985), no. 1, 151-164. MR 780488 (86k:20046), https://doi.org/10.1016/0021-8693(85)90179-6
  • [24] Gerhard Hiss and Gunter Malle, Corrigenda: ``Low-dimensional representations of quasi-simple groups'' [LMS J. Comput. Math. 4 (2001), 22-63; MR1835851 (2002b:20015)], LMS J. Comput. Math. 5 (2002), 95-126 (electronic). MR 1942256 (2003k:20010), https://doi.org/10.1112/S1461157000000711
  • [25] G. D. James, On the minimal dimensions of irreducible representations of symmetric groups, Math. Proc. Cambridge Philos. Soc. 94 (1983), no. 3, 417-424. MR 720791 (86c:20018), https://doi.org/10.1017/S0305004100000803
  • [26] Christoph Jansen, Klaus Lux, Richard Parker, and Robert Wilson, An atlas of Brauer characters, London Mathematical Society Monographs. New Series, vol. 11, The Clarendon Press, Oxford University Press, New York, 1995. Appendix 2 by T. Breuer and S. Norton; Oxford Science Publications. MR 1367961 (96k:20016)
  • [27] Peter Kleidman and Martin Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, vol. 129, Cambridge University Press, Cambridge, 1990. MR 1057341 (91g:20001)
  • [28] Christoph Köhler and Herbert Pahlings, Regular orbits and the $ k(GV)$-problem, Groups and computation, III (Columbus, OH, 1999) Ohio State Univ. Math. Res. Inst. Publ., vol. 8, de Gruyter, Berlin, 2001, pp. 209-228. MR 1829482 (2002d:20010)
  • [29] Vicente Landazuri and Gary M. Seitz, On the minimal degrees of projective representations of the finite Chevalley groups, J. Algebra 32 (1974), 418-443. MR 0360852 (50 #13299)
  • [30] Martin W. Liebeck, The affine permutation groups of rank three, Proc. London Math. Soc. (3) 54 (1987), no. 3, 477-516. MR 879395 (88m:20004), https://doi.org/10.1112/plms/s3-54.3.477
  • [31] Martin W. Liebeck, Cheryl E. Praeger, and Jan Saxl, Regular subgroups of primitive permutation groups, Mem. Amer. Math. Soc. 203 (2010), no. 952, vi+74. MR 2588738 (2011h:20001), https://doi.org/10.1090/S0065-9266-09-00569-9
  • [32] Martin W. Liebeck and Jan Saxl, The primitive permutation groups of odd degree, J. London Math. Soc. (2) 31 (1985), no. 2, 250-264. MR 809946 (87c:20007), https://doi.org/10.1112/jlms/s2-31.2.250
  • [33] Gunter Malle, Fast-einfache Gruppen mit langen Bahnen in absolut irreduzibler Operation, J. Algebra 300 (2006), no. 2, 655-672 (German, with German summary). MR 2228215 (2007f:20030), https://doi.org/10.1016/j.jalgebra.2006.01.012
  • [34] Masafumi Murai, On Brauer's height zero conjecture, Proc. Japan Acad. Ser. A Math. Sci. 88 (2012), no. 3, 38-40. MR 2908621
  • [35] G. Navarro and B. Späth, A reduction theorem for the Brauer height zero conjecture, J. Eur. Math. Soc. (to appear).
  • [36] Gabriel Navarro and Pham Huu Tiep, Brauer's height zero conjecture for the 2-blocks of maximal defect, J. Reine Angew. Math. 669 (2012), 225-247. MR 2980457
  • [37] Gabriel Navarro and Pham Huu Tiep, Characters of relative $ p'$-degree over normal subgroups, Ann. of Math. (2) 178 (2013), no. 3, 1135-1171. MR 3092477, https://doi.org/10.4007/annals.2013.178.3.7
  • [38] D. S. Passman, Solvable $ {3\over 2}$-transitive permutation groups, J. Algebra 7 (1967), 192-207. MR 0235018 (38 #3330)
  • [39] D. S. Passman, Exceptional $ 3/2$-transitive permutation groups, Pacific J. Math. 29 (1969), 669-713. MR 0244363 (39 #5678)
  • [40] Gary M. Seitz and Alexander E. Zalesskii, On the minimal degrees of projective representations of the finite Chevalley groups. II, J. Algebra 158 (1993), no. 1, 233-243. MR 1223676 (94h:20017), https://doi.org/10.1006/jabr.1993.1132
  • [41] Ákos Seress, Primitive groups with no regular orbits on the set of subsets, Bull. London Math. Soc. 29 (1997), no. 6, 697-704. MR 1468057 (98g:20008), https://doi.org/10.1112/S0024609397003536
  • [42] Pham Huu Tiep and A. E. Zalesskii, Unipotent elements of finite groups of Lie type and realization fields of their complex representations, J. Algebra 271 (2004), no. 1, 327-390. MR 2022486 (2004m:20032), https://doi.org/10.1016/S0021-8693(03)00174-1
  • [43] Ascher Wagner, An observation on the degrees of projective representations of the symmetric and alternating group over an arbitrary field, Arch. Math. (Basel) 29 (1977), no. 6, 583-589. MR 0460451 (57 #444)
  • [44] Harold N. Ward, Representations of symplectic groups, J. Algebra 20 (1972), 182-195. MR 0286909 (44 #4116)
  • [45] Helmut Wielandt, Finite permutation groups, Translated from the German by R. Bercov, Academic Press, New York-London, 1964. MR 0183775 (32 #1252)
  • [46] R. A. Wilson, et al., A World-Wide-Web Atlas of finite group representations, http://brauer.maths.qmul.ac.uk/Atlas/v3/.
  • [47] Hans Zassenhaus, Über endliche Fastkörper, Abh. Math. Sem. Univ. Hamburg 11 (1935), no. 1, 187-220 (German). MR 3069653, https://doi.org/10.1007/BF02940723

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 20B05, 20H30

Retrieve articles in all journals with MSC (2010): 20B05, 20H30


Additional Information

Michael Giudici
Affiliation: Centre for the Mathematics of Symmetry and Computation, School of Mathematics and Statistics, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009
Email: michael.giudici@uwa.edu.au

Martin W. Liebeck
Affiliation: Department of Mathematics, Imperial College, London SW7 2BZ, England
Email: m.liebeck@imperial.ac.uk

Cheryl E. Praeger
Affiliation: Centre for the Mathematics of Symmetry and Computation, School of Mathematics and Statistics, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009
Email: Cheryl.Praeger@uwa.edu.au

Jan Saxl
Affiliation: Department of Pure Mathematics and Mathematical Statistics, CMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, England
Email: saxl@dpmms.cam.ac.uk

Pham Huu Tiep
Affiliation: Department of Mathematics, University of Arizona, 617 N. Santa Rita Avenue, Tucson, Arizona 85721-0089
Email: tiep@math.arizona.edu

DOI: https://doi.org/10.1090/tran/6373
Received by editor(s): March 12, 2012
Received by editor(s) in revised form: January 14, 2014
Published electronically: August 19, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society