Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 


Cluster values of holomorphic functions of bounded type

Authors: Richard M. Aron, Daniel Carando, Silvia Lassalle and Manuel Maestre
Journal: Trans. Amer. Math. Soc. 368 (2016), 2355-2369
MSC (2010): Primary 46J15, 46E50, 30H05
Published electronically: July 1, 2015
MathSciNet review: 3449242
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [AcoLou07] María D. Acosta and Mary Lilian Lourenço, Shilov boundary for holomorphic functions on some classical Banach spaces, Studia Math. 179 (2007), no. 1, 27-39. MR 2291721 (2008c:46061),
  • [AroBer78] Richard M. Aron and Paul D. Berner, A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. France 106 (1978), no. 1, 3-24 (English, with French summary). MR 508947 (80e:46029)
  • [ACG91] R. M. Aron, B. J. Cole, and T. W. Gamelin, Spectra of algebras of analytic functions on a Banach space, J. Reine Angew. Math. 415 (1991), 51-93. MR 1096902 (92f:46056)
  • [ACGLM12] Richard M. Aron, Daniel Carando, T. W. Gamelin, Silvia Lassalle, and Manuel Maestre, Cluster values of analytic functions on a Banach space, Math. Ann. 353 (2012), no. 2, 293-303. MR 2915537,
  • [ADR84] R. M. Aron, J. Diestel, and A. K. Rajappa, Weakly continuous functions on Banach spaces containing $ l_1$, Banach spaces (Columbia, Mo., 1984) Lecture Notes in Math., vol. 1166, Springer, Berlin, 1985, pp. 1-3. MR 827751 (87g:46022),
  • [AGGM96] R. M. Aron, P. Galindo, D. García, and M. Maestre, Regularity and algebras of analytic functions in infinite dimensions, Trans. Amer. Math. Soc. 348 (1996), no. 2, 543-559. MR 1340167 (96g:46032),
  • [BoyRya98] C. Boyd and R. A. Ryan, Bounded weak continuity of homogeneous polynomials at the origin, Arch. Math. (Basel) 71 (1998), no. 3, 211-218. MR 1637369 (99k:46076),
  • [CGMS12] Daniel Carando, Domingo García, Manuel Maestre, and Pablo Sevilla-Peris, On the spectra of algebras of analytic functions, Topics in complex analysis and operator theory, Contemp. Math., vol. 561, Amer. Math. Soc., Providence, RI, 2012, pp. 165-198. MR 2905544 (2012k:46001),
  • [Car62] Lennart Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547-559. MR 0141789 (25 #5186)
  • [ColLoh66] E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge Tracts in Mathematics and Mathematical Physics, No. 56, Cambridge University Press, Cambridge, 1966. MR 0231999 (38 #325)
  • [DavGam89] A. M. Davie and T. W. Gamelin, A theorem on polynomial-star approximation, Proc. Amer. Math. Soc. 106 (1989), no. 2, 351-356. MR 947313 (89k:46023),
  • [Die84] Joseph Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984. MR 737004 (85i:46020)
  • [Din99] Seán Dineen, Complex analysis on infinite-dimensional spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 1999. MR 1705327 (2001a:46043)
  • [Far98] Jeff D. Farmer, Fibers over the sphere of a uniformly convex Banach space, Michigan Math. J. 45 (1998), no. 2, 211-226. MR 1637638 (99h:46063),
  • [Gam69] Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1969. MR 0410387 (53 #14137)
  • [Gam94] Theodore W. Gamelin, Analytic functions on Banach spaces, Complex potential theory (Montreal, PQ, 1993) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 439, Kluwer Acad. Publ., Dordrecht, 1994, pp. 187-233. MR 1332962 (96m:46082)
  • [JohOrt12a] W. B. Johnson and S. Ortega Castillo, The cluster value problem in spaces of continuous functions, Proc. Amer. Math. Soc. 143 (2015), no. 4, 1559-1568. MR 3314069,
  • [JohOrt12b] W. B. Johnson and S. Ortega Castillo, The cluster value problem for Banach spaces, preprint.
  • [LlaMor04] J. G. Llavona and L. A. Moraes, The Aron-Berner extension for polynomials defined in the dual of a Banach space, Publ. Res. Inst. Math. Sci. 40 (2004), no. 1, 221-230. MR 2030074 (2004k:46069)
  • [Muj86] Jorge Mujica, Complex analysis in Banach spaces, Holomorphic functions and domains of holomorphy in finite and infinite dimensions, Notas de Matemática [Mathematical Notes], 107, North-Holland Mathematics Studies, vol. 120, North-Holland Publishing Co., Amsterdam, 1986. MR 842435 (88d:46084)
  • [Munkres] J. M. Munkres, Topology, Second Edition. Prentice Hall, Upper Saddle River, 2000.
  • [Sch61] I. J. Schark, Maximal ideals in an algebra of bounded analytic functions, J. Math. Mech. 10 (1961), 735-746. (``I. J. Schark'' is a pseudonym for the group: Irving Kaplansky, John Wermer, Shizuo Kakutani, R. Creighton Buck, Halsey Royden, Andrew Gleason, Richard Arens and Kenneth Hoffman.). MR 0125442 (23 #A2744)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 46J15, 46E50, 30H05

Retrieve articles in all journals with MSC (2010): 46J15, 46E50, 30H05

Additional Information

Richard M. Aron
Affiliation: Department of Mathematical Sciences, Kent State University, Kent, Ohio 44242

Daniel Carando
Affiliation: Departamento de Matemática, Pab I, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (1428) Buenos Aires, Argentina – and – IMAS - CONICET

Silvia Lassalle
Affiliation: Departamento de Matemática, Universidad de San Andrés, Vito Dumas 284, (B1644BID) Victoria, Buenos Aires, Argentina – and – IMAS - CONICET

Manuel Maestre
Affiliation: Departmento de Análisis Matemático, Universidad de Valencia, Doctor Moliner 50, 6100 Burjasot (Valencia), Spain

Keywords: Cluster value, analytic functions of bounded type, Banach space, spectrum, fiber
Received by editor(s): March 26, 2013
Received by editor(s) in revised form: November 14, 2013, and January 11, 2014
Published electronically: July 1, 2015
Additional Notes: The first and fourth authors were supported by MICINN Project MTM2011-22417
The second and third authors were partially supported by CONICET PIP 0624, ANPCyT PICT 2011-1456 and UBACyT Grants 1-218, 1-746, and 20020130100474BA
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society