Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Recurrence and primitivity for IP systems with polynomial wildcards


Authors: James T. Campbell and Randall McCutcheon
Journal: Trans. Amer. Math. Soc. 368 (2016), 2697-2721
MSC (2010): Primary 28D05
DOI: https://doi.org/10.1090/tran/6408
Published electronically: May 5, 2015
MathSciNet review: 3449254
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The IP Szemerédi Theorem of Furstenberg and Katznelson guarantees that for any positive density subset $ E$ of a countable abelian group $ G$ and for any sequences $ (g_i^{(j)})_{i=1}^\infty $ in $ G$, $ 1\leq j\leq k$, there is a finite non-empty $ \alpha \subset {\mathbb{N}}$ such that $ \bigcap _{j=1}^k ( E- \sum _{i\in \alpha } g_i^{(j)}) \neq \emptyset $. A natural question is whether, in this theorem, one may restrict $ \vert\alpha \vert$ to, for example, the set $ \{ n^d: d\in {\mathbb{N}}\}$. As a first step toward achieving this result, we develop here a new method for taking weak IP limits and prove a relevant projection theorem for unitary operators, which establishes as a corollary the case $ k=2$ of the target result.


References [Enhancements On Off] (What's this?)

  • [BFM96] Vitaly Bergelson, Hillel Furstenberg, and Randall McCutcheon, IP-sets and polynomial recurrence, Ergodic Theory Dynam. Systems 16 (1996), no. 5, 963-974. MR 1417769 (98c:28024), https://doi.org/10.1017/S0143385700010130
  • [BHKM06] Vitaly Bergelson, Inger J. Håland Knutson, and Randall McCutcheon, IP-systems, generalized polynomials and recurrence, Ergodic Theory Dynam. Systems 26 (2006), no. 4, 999-1019. MR 2246589 (2008d:37001), https://doi.org/10.1017/S0143385706000010
  • [BL96] V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden's and Szemerédi's theorems, J. Amer. Math. Soc. 9 (1996), no. 3, 725-753. MR 1325795 (96j:11013), https://doi.org/10.1090/S0894-0347-96-00194-4
  • [BM00] Vitaly Bergelson and Randall McCutcheon, An ergodic IP polynomial Szemerédi theorem, Mem. Amer. Math. Soc. 146 (2000), no. 695, viii+106. MR 1692634 (2000m:28018), https://doi.org/10.1090/memo/0695
  • [FK78] H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, J. Analyse Math. 34 (1978), 275-291 (1979). MR 531279 (82c:28032), https://doi.org/10.1007/BF02790016
  • [FK85] H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for IP-systems and combinatorial theory, J. Analyse Math. 45 (1985), 117-168. MR 833409 (87m:28007), https://doi.org/10.1007/BF02792547
  • [FK91] H. Furstenberg and Y. Katznelson, A density version of the Hales-Jewett theorem, J. Anal. Math. 57 (1991), 64-119. MR 1191743 (94f:28020), https://doi.org/10.1016/S0167-5060(08)70577-6
  • [Fur77] Harry Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204-256. MR 0498471 (58 #16583)
  • [Hin74] Neil Hindman, Finite sums from sequences within cells of a partition of $ N$, J. Combinatorial Theory Ser. A 17 (1974), 1-11. MR 0349574 (50 #2067)
  • [McC05] Randall McCutcheon, FVIP systems and multiple recurrence, Israel J. Math. 146 (2005), 157-188. MR 2151599 (2006b:37015), https://doi.org/10.1007/BF02773532
  • [McC11] Randall McCutcheon, The wildcard set's size in the density Hales-Jewett theorem, Electron. J. Combin. 18 (2011), no. 1, Paper 114, 12. MR 2811083 (2012i:05339)
  • [Mil75] Keith R. Milliken, Ramsey's theorem with sums or unions, J. Combinatorial Theory Ser. A 18 (1975), 276-290. MR 0373906 (51 #10106)
  • [Pol12] D. H. J. Polymath, A new proof of the density Hales-Jewett theorem, Ann. of Math. (2) 175 (2012), no. 3, 1283-1327. MR 2912706, https://doi.org/10.4007/annals.2012.175.3.6
  • [Ram30] F. P. Ramsey, On a Problem of Formal Logic, Proc. London Math. Soc. S2-30, no. 1, 264. MR 1576401, https://doi.org/10.1112/plms/s2-30.1.264
  • [Sze75] E. Szemerédi, On sets of integers containing no $ k$ elements in arithmetic progression, Acta Arith. 27 (1975), 199-245. Collection of articles in memory of Juriĭ Vladimirovič Linnik. MR 0369312 (51 #5547)
  • [Tay76] Alan D. Taylor, A canonical partition relation for finite subsets of $ \omega $, J. Combinatorial Theory Ser. A 21 (1976), no. 2, 137-146. MR 0424571 (54 #12530)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 28D05

Retrieve articles in all journals with MSC (2010): 28D05


Additional Information

James T. Campbell
Affiliation: Department of Mathematical Sciences, University of Memphis, Memphis, Tennessee 38152
Email: jcampbll@memphis.edu

Randall McCutcheon
Affiliation: Department of Mathematical Sciences, University of Memphis, Memphis, Tennessee 38152
Email: rmcctchn@memphis.edu

DOI: https://doi.org/10.1090/tran/6408
Received by editor(s): December 31, 2013
Received by editor(s) in revised form: February 8, 2014, and February 16, 2014
Published electronically: May 5, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society