Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On random Hermite series


Authors: Rafik Imekraz, Didier Robert and Laurent Thomann
Journal: Trans. Amer. Math. Soc. 368 (2016), 2763-2792
MSC (2010): Primary 60G50
DOI: https://doi.org/10.1090/tran/6607
Published electronically: April 8, 2015
MathSciNet review: 3449257
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study integrability and continuity properties of random series of Hermite functions. We get optimal results which are analogues to classical results concerning Fourier series, like the Paley-Zygmund or the Salem-Zygmund theorems. We also consider the case of series of radial Hermite functions, which are not so well-behaved. In this context, we prove some$ L^p$ bounds of radial Hermite functions, which are optimal when $ p$ is large.


References [Enhancements On Off] (What's this?)

  • [1] Richard Askey and Stephen Wainger, Mean convergence of expansions in Laguerre and Hermite series, Amer. J. Math. 87 (1965), 695-708. MR 0182834 (32 #316)
  • [2] Antoine Ayache and Nikolay Tzvetkov, $ L^p$ properties for Gaussian random series, Trans. Amer. Math. Soc. 360 (2008), no. 8, 4425-4439. MR 2395179 (2009e:30006), https://doi.org/10.1090/S0002-9947-08-04456-5
  • [3] Nicolas Burq and Gilles Lebeau, Injections de Sobolev probabilistes et applications, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), no. 6, 917-962 (French, with English and French summaries). MR 3134684
  • [4] Yu Deng, Two-dimensional nonlinear Schrödinger equation with random radial data, Anal. PDE 5 (2012), no. 5, 913-960. MR 3022846
  • [5] Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995. MR 1342297 (96i:46001)
  • [6] A. Erdélyi, Asymptotic forms for Laguerre polynomials, J. Indian Math. Soc. (N.S.) 24 (1960), 235-250 (1961). MR 0123751 (23 #A1073)
  • [7] Sophie Grivaux, Almost sure convergence of some random series, C. R. Math. Acad. Sci. Paris 348 (2010), no. 3-4, 155-159 (English, with English and French summaries). MR 2600068 (2011b:60111), https://doi.org/10.1016/j.crma.2010.01.020
  • [8] J. Hoffmann-Jørgensen, Probability in Banach space, École d'Été de Probabilités de Saint-Flour, VI-1976, Springer-Verlag, Berlin, 1977, pp. 1-186. Lecture Notes in Math., Vol. 598. MR 0461610 (57 #1595)
  • [9] Jean-Pierre Kahane, Some random series of functions, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 5, Cambridge University Press, Cambridge, 1985. MR 833073 (87m:60119)
  • [10] Herbert Koch and Daniel Tataru, $ L^p$ eigenfunction bounds for the Hermite operator, Duke Math. J. 128 (2005), no. 2, 369-392. MR 2140267 (2006d:35044), https://doi.org/10.1215/S0012-7094-04-12825-8
  • [11] Daniel Li and Hervé Queffélec, Introduction à l'étude des espaces de Banach, Cours Spécialisés [Specialized Courses], vol. 12, Société Mathématique de France, Paris, 2004 (French). Analyse et probabilités. [Analysis and probability theory]. MR 2124356 (2006c:46012)
  • [12] Michael B. Marcus and Gilles Pisier, Random Fourier series with applications to harmonic analysis, Annals of Mathematics Studies, vol. 101, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1981. MR 630532 (83b:60031)
  • [13] Bernard Maurey and Gilles Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), no. 1, 45-90 (French). MR 0443015 (56 #1388)
  • [14] Benjamin Muckenhoupt, Mean convergence of Hermite and Laguerre series. II, Trans. Amer. Math. 147 (1970), 433-460. MR 0256051 (41 #711)
  • [15] Aurélien Poiret, Didier Robert, and Laurent Thomann, Probabilistic global well-posedness for the supercritical nonlinear harmonic oscillator, Anal. PDE 7 (2014), no. 4, 997-1026. MR 3254351, https://doi.org/10.2140/apde.2014.7.997
  • [16] Aurélien Poiret, Didier Robert, and Laurent Thomann, Random-weighted Sobolev inequalities on $ \mathbb{R}^d$ and application to Hermite functions, Ann. Henri Poincaré 16 (2015), no. 2, 651-689. MR 3302609, https://doi.org/10.1007/s00023-014-0317-5
  • [17] Didier Robert and Laurent Thomann, Random Weighted Sobolev Inequalities and Application to Quantum Ergodicity, Comm. Math. Phys. 335 (2015), no. 3, 1181-1209. MR 3320309, https://doi.org/10.1007/s00220-015-2335-7
  • [18] Bernard Shiffman and Steve Zelditch, Random polynomials of high degree and Levy concentration of measure, Asian J. Math. 7 (2003), no. 4, 627-646. MR 2074895 (2005e:32037)
  • [19] Gabor Szegö, Orthogonal Polynomials, American Mathematical Society, New York, 1939. American Mathematical Society Colloquium Publications, v. 23. MR 0000077 (1,14b)
  • [20] Sundaram Thangavelu, Lectures on Hermite and Laguerre expansions, Mathematical Notes, vol. 42, Princeton University Press, Princeton, NJ, 1993. With a preface by Robert S. Strichartz. MR 1215939 (94i:42001)
  • [21] N. Tzvetkov, Riemannian analogue of a Paley-Zygmund theorem, Séminaire EDP X, 2008-2009, Exposé no. XV.
  • [22] David Williams, Probability with martingales, Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1991. MR 1155402 (93d:60002)
  • [23] Kenji Yajima and Guoping Zhang, Local smoothing property and Strichartz inequality for Schrödinger equations with potentials superquadratic at infinity, J. Differential Equations 202 (2004), no. 1, 81-110. MR 2060533 (2005f:35266), https://doi.org/10.1016/j.jde.2004.03.027

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 60G50

Retrieve articles in all journals with MSC (2010): 60G50


Additional Information

Rafik Imekraz
Affiliation: Institut de Mathématiques de Bordeaux, UMR 5251 du CNRS, Université de Bordeaux 1, 351, cours de la Libération F33405 Talence Cedex, France
Email: rafik.imekraz@math.u-bordeaux1.fr

Didier Robert
Affiliation: Laboratoire de Mathématiques J. Leray, UMR 6629 du CNRS, Université de Nantes, 2, rue de la Houssinière, 44322 Nantes Cedex 03, France
Email: didier.robert@univ-nantes.fr

Laurent Thomann
Affiliation: Laboratoire de Mathématiques J. Leray, UMR 6629 du CNRS, Université de Nantes, 2, rue de la Houssinière, 44322 Nantes Cedex 03, France
Email: laurent.thomann@univ-nantes.fr

DOI: https://doi.org/10.1090/tran/6607
Keywords: Harmonic oscillator, Hermite functions, random series, harmonic analysis.
Received by editor(s): March 20, 2014
Published electronically: April 8, 2015
Additional Notes: The second author was partly supported by the grant “NOSEVOL” ANR-2011-BS01019 01
The third author was partly supported by the grant “HANDDY” ANR-10-JCJC 0109, and by the grant “ANAÉ” ANR-13-BS01-0010-03
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society