Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Gauged Hamiltonian Floer homology I: Definition of the Floer homology groups


Author: Guangbo Xu
Journal: Trans. Amer. Math. Soc. 368 (2016), 2967-3015
MSC (2010): Primary 53D20, 53D40; Secondary 37J05
DOI: https://doi.org/10.1090/tran/6643
Published electronically: October 20, 2015
MathSciNet review: 3449264
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct the vortex Floer homology group $ VHF\left ( M, \mu ; H\right )$ for an aspherical Hamiltonian $ G$-manifold $ (M, \omega , \mu )$ and a class of $ G$-invariant Hamiltonian loops $ H_t$, following a proposal of Cieliebak, Gaio, and Salamon (2000). This is a substitute for the ordinary Hamiltonian Floer homology of the symplectic quotient of $ M$. The equation for connecting orbits is a perturbed symplectic vortex equation on the cylinder $ \mathbb{R} \times S^1$. We achieve the transversality of the moduli space by the classical perturbation argument instead of the virtual technique, so the homology can be defined over $ \mathbb{Z}$.


References [Enhancements On Off] (What's this?)

  • [1] S. Agmon and L. Nirenberg, Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space, Comm. Pure Appl. Math. 20 (1967), 207-229. MR 0204829 (34 #4665)
  • [2] Paul Biran and Octav Cornea, Quantum structures for Lagrangian submanifolds, arXiv: 0708.4221, 2007.
  • [3] Paul Biran and Octav Cornea, A Lagrangian quantum homology, New perspectives and challenges in symplectic field theory, CRM Proc. Lecture Notes, vol. 49, Amer. Math. Soc., Providence, RI, 2009, pp. 1-44. MR 2555932 (2010m:53132)
  • [4] Élie Cartan, La topologie des espaces représentatifs des groupes de Lie, L'Enseignement Mathématique 35 (1936), 177-200.
  • [5] K. Cieliebak, A. Floer, and H. Hofer, Symplectic homology. II. A general construction, Math. Z. 218 (1995), no. 1, 103-122. MR 1312580 (95m:58055), https://doi.org/10.1007/BF02571891
  • [6] K. Cieliebak, A. Floer, H. Hofer, and K. Wysocki, Applications of symplectic homology. II. Stability of the action spectrum, Math. Z. 223 (1996), no. 1, 27-45. MR 1408861 (97j:58045), https://doi.org/10.1007/PL00004267
  • [7] Kai Cieliebak, A. Rita Gaio, Ignasi Mundet i Riera, and Dietmar A. Salamon, The symplectic vortex equations and invariants of Hamiltonian group actions, J. Symplectic Geom. 1 (2002), no. 3, 543-645. MR 1959059 (2004g:53098)
  • [8] Kai Cieliebak, Ana Rita Gaio, and Dietmar A. Salamon, $ J$-holomorphic curves, moment maps, and invariants of Hamiltonian group actions, Internat. Math. Res. Notices 16 (2000), 831-882. MR 1777853 (2001h:53130), https://doi.org/10.1155/S1073792800000453
  • [9] S. K. Donaldson, Floer homology groups in Yang-Mills theory., With the assistance of M. Furuta and D. Kotschick. Cambridge Tracts in Mathematics, vol. 147, Cambridge University Press, Cambridge, 2002. MR 1883043 (2002k:57078)
  • [10] Stamatis Dostoglou and Dietmar A. Salamon, Self-dual instantons and holomorphic curves, Ann. of Math. (2) 139 (1994), no. 3, 581-640. MR 1283871 (95g:58050), https://doi.org/10.2307/2118573
  • [11] Y. Eliashberg, A. Givental, and H. Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. Special Volume (2000), 560-673. GAFA 2000 (Tel Aviv, 1999). MR 1826267 (2002e:53136), https://doi.org/10.1007/978-3-0346-0425-3_4
  • [12] Andreas Floer, An instanton-invariant for $ 3$-manifolds, Comm. Math. Phys. 118 (1988), no. 2, 215-240. MR 956166 (89k:57028)
  • [13] Andreas Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988), no. 3, 513-547. MR 965228 (90f:58058)
  • [14] Andreas Floer, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989), no. 4, 575-611. MR 987770 (90e:58047)
  • [15] A. Floer and H. Hofer, Coherent orientations for periodic orbit problems in symplectic geometry, Math. Z. 212 (1993), no. 1, 13-38. MR 1200162 (94m:58036), https://doi.org/10.1007/BF02571639
  • [16] A. Floer and H. Hofer, Symplectic homology. I. Open sets in $ {\bf C}^n$, Math. Z. 215 (1994), no. 1, 37-88. MR 1254813 (95b:58059), https://doi.org/10.1007/BF02571699
  • [17] Andreas Floer, Helmut Hofer, and Dietmar Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J. 80 (1995), no. 1, 251-292. MR 1360618 (96h:58024), https://doi.org/10.1215/S0012-7094-95-08010-7
  • [18] Urs Adrian Frauenfelder, Floer homology of symplectic quotients and the Arnold-Givental conjecture, ProQuest LLC, Ann Arbor, MI, 2003. Thesis (Dr.sc.math.)-Eidgenoessische Technische Hochschule Zuerich (Switzerland). MR 2715556
  • [19] Urs Adrian Frauenfelder, Floer homology of symplectic quotients and the Arnold-Givental conjecture, International Mathematics Research Notices 2004 (2004), no. 42, 2179-2269.
  • [20] Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono, Lagrangian Floer theory on compact toric manifolds. I, Duke Math. J. 151 (2010), no. 1, 23-174. MR 2573826 (2011d:53220), https://doi.org/10.1215/00127094-2009-062
  • [21] Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono, Lagrangian Floer theory on compact toric manifolds II: bulk deformations, Selecta Math. (N.S.) 17 (2011), no. 3, 609-711. MR 2827178, https://doi.org/10.1007/s00029-011-0057-z
  • [22] Kenji Fukaya and Kaoru Ono, Floer homology and Gromov-Witten invariant over integer of general symplectic manifolds--summary, Taniguchi Conference on Mathematics Nara '98, Adv. Stud. Pure Math., vol. 31, Math. Soc. Japan, Tokyo, 2001, pp. 75-91. MR 1865088 (2002i:53115)
  • [23] Kenji Fukaya and Kaoru Ono, Arnold conjecture and Gromov-Witten invariant, Topology 38 (1999), no. 5, 933-1048. MR 1688434 (2000j:53116), https://doi.org/10.1016/S0040-9383(98)00042-1
  • [24] Ana Rita Pires Gaio and Dietmar A. Salamon, Gromov-Witten invariants of symplectic quotients and adiabatic limits, J. Symplectic Geom. 3 (2005), no. 1, 55-159. MR 2198773 (2007k:53156)
  • [25] Mark J. Gotay, On coisotropic imbeddings of presymplectic manifolds, Proc. Amer. Math. Soc. 84 (1982), no. 1, 111-114. MR 633290 (83j:53028), https://doi.org/10.2307/2043821
  • [26] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), no. 2, 307-347. MR 809718 (87j:53053), https://doi.org/10.1007/BF01388806
  • [27] Victor Guillemin and Shlomo Sternberg, Symplectic techniques in physics, Cambridge University Press, Cambridge, 1984. MR 770935 (86f:58054)
  • [28] H. Hofer and D. A. Salamon, Floer homology and Novikov rings, The Floer memorial volume, Progr. Math., vol. 133, Birkhäuser, Basel, 1995, pp. 483-524. MR 1362838 (97f:57032)
  • [29] Michael Hutchings and Michael Sullivan, Rounding corners of polygons and the embedded contact homology of $ T^3$, Geom. Topol. 10 (2006), 169-266. MR 2207793 (2006k:53150), https://doi.org/10.2140/gt.2006.10.169
  • [30] Michael Hutchings and Clifford Henry Taubes, Gluing pseudoholomorphic curves along branched covered cylinders. I, J. Symplectic Geom. 5 (2007), no. 1, 43-137. MR 2371184 (2008k:53201)
  • [31] Maxim Kontsevich, Homological algebra of mirror symmetry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 120-139. MR 1403918 (97f:32040)
  • [32] Peter Kronheimer and Tomasz Mrowka, Monopoles and three-manifolds, New Mathematical Monographs, vol. 10, Cambridge University Press, Cambridge, 2007. MR 2388043 (2009f:57049)
  • [33] Gang Liu and Gang Tian, Floer homology and Arnold conjecture, J. Differential Geom. 49 (1998), no. 1, 1-74. MR 1642105 (99m:58047)
  • [34] Charles-Michel Marle, Modèle d'action hamiltonienne d'un groupe de Lie sur une variété symplectique, Rend. Sem. Mat. Univ. Politec. Torino 43 (1985), no. 2, 227-251 (1986) (French, with English summary). MR 859857 (88a:58075)
  • [35] Dusa McDuff and Dietmar Salamon, $ J$-holomorphic curves and symplectic topology, American Mathematical Society Colloquium Publications, vol. 52, American Mathematical Society, Providence, RI, 2004. MR 2045629 (2004m:53154)
  • [36] Ignasi Mundet i Riera, Yang-Mills-Higgs theory for symplectic fibrations, Ph.D. thesis, Universidad Autonoma de Madrid, 1999.
  • [37] Ignasi Mundet i Riera, Hamiltonian Gromov-Witten invariants, Topology 42 (2003), no. 3, 525-553. MR 1953239 (2004d:53106), https://doi.org/10.1016/S0040-9383(02)00023-X
  • [38] I. Mundet i Riera and G. Tian, A compactification of the moduli space of twisted holomorphic maps, Adv. Math. 222 (2009), no. 4, 1117-1196. MR 2554933 (2011d:53226), https://doi.org/10.1016/j.aim.2009.05.019
  • [39] Kaoru Ono, On the Arnold conjecture for weakly monotone symplectic manifolds, Invent. Math. 119 (1995), no. 3, 519-537. MR 1317649 (96a:58046), https://doi.org/10.1007/BF01245191
  • [40] Peter Ozsváth and Zoltán Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), no. 3, 1027-1158. MR 2113019 (2006b:57016), https://doi.org/10.4007/annals.2004.159.1027
  • [41] S. Piunikhin, D. Salamon, and M. Schwarz, Symplectic Floer-Donaldson theory and quantum cohomology, Contact and symplectic geometry (Cambridge, 1994) Publ. Newton Inst., vol. 8, Cambridge Univ. Press, Cambridge, 1996, pp. 171-200. MR 1432464 (97m:57053)
  • [42] Joel Robbin and Dietmar Salamon, The Maslov index for paths, Topology 32 (1993), no. 4, 827-844. MR 1241874 (94i:58071), https://doi.org/10.1016/0040-9383(93)90052-W
  • [43] Joel Robbin and Dietmar Salamon, The spectral flow and the Maslov index, Bull. London Math. Soc. 27 (1995), no. 1, 1-33. MR 1331677 (96d:58021), https://doi.org/10.1112/blms/27.1.1
  • [44] Joel W. Robbin and Dietmar A. Salamon, Asymptotic behaviour of holomorphic strips, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), no. 5, 573-612 (English, with English and French summaries). MR 1849689 (2002e:53135), https://doi.org/10.1016/S0294-1449(00)00066-4
  • [45] Dietmar Salamon, Lectures on Floer homology, Symplectic geometry and topology (Park City, UT, 1997) IAS/Park City Math. Ser., vol. 7, Amer. Math. Soc., Providence, RI, 1999, pp. 143-229. MR 1702944 (2000g:53100), https://doi.org/10.1016/S0165-2427(99)00127-0
  • [46] Stephen Schecter and Guangbo Xu, Morse theory for Lagrange multipliers and adiabatic limits, J. Differential Equations 257 (2014), no. 12, 4277-4318. MR 3268727, https://doi.org/10.1016/j.jde.2014.08.018
  • [47] Edward Witten, Supersymmetry and Morse theory, J. Differential Geom. 17 (1982), no. 4, 661-692 (1983). MR 683171 (84b:58111)
  • [48] Chris T. Woodward, Quantum Kirwan morphism and Gromov-Witten invariants of quotients I, Transform. Groups 20 (2015), no. 2, 507-556. MR 3348566, https://doi.org/10.1007/s00031-015-9313-1
  • [49] Christopher T. Woodward, Gauged Floer theory of toric moment fibers, Geom. Funct. Anal. 21 (2011), no. 3, 680-749. MR 2810861 (2012f:53187), https://doi.org/10.1007/s00039-011-0119-6
  • [50] Guangbo Xu, The moduli space of twisted holomorphic maps with Lagrangian boundary condition: compactness, Adv. Math. 242 (2013), 1-49. MR 3055986, https://doi.org/10.1016/j.aim.2013.04.011
  • [51] Fabian Ziltener, A quantum Kirwan map: bubbling and Fredholm theory for symplectic vortices over the plane, Mem. Amer. Math. Soc. 230 (2014), no. 1082, vi+129. MR 3221852

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 53D20, 53D40, 37J05

Retrieve articles in all journals with MSC (2010): 53D20, 53D40, 37J05


Additional Information

Guangbo Xu
Affiliation: Department of Mathematics, 410N Rowland Hall, University of California Irvine, Irvine, California 92697
Address at time of publication: Department of Mathematics, Princeton University, Fine Hall, Washington Rd., Princeton, New Jersey 08544
Email: guangbox@math.uci.edu, guangbox@math.princeton.edu

DOI: https://doi.org/10.1090/tran/6643
Received by editor(s): August 28, 2014
Received by editor(s) in revised form: August 31, 2014, September 26, 2014, and December 31, 2014
Published electronically: October 20, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society