Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Equivariant heat asymptotics on spaces of automorphic forms


Authors: Octavio Paniagua-Taboada and Pablo Ramacher
Journal: Trans. Amer. Math. Soc. 368 (2016), 3509-3537
MSC (2010): Primary 22E46, 53C35, 11F12, 58J40, 58J37, 58J35
DOI: https://doi.org/10.1090/tran/6439
Published electronically: June 3, 2015
MathSciNet review: 3451884
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a connected, real, semisimple Lie group with finite center and $ K$ a compact subgroup of $ G$. In this paper, we derive $ K$-equivariant asymptotics for heat traces with remainder estimates on compact Riemannian manifolds carrying a transitive $ G$-action. In particular, if $ K$ is a maximal compact subgroup, we recover the leading coefficient in the Minakshisundaram-Pleijel expansion of the $ K$-equivariant heat trace of the Laplace-Beltrami operator on spaces of automorphic forms for arbitrary rank.


References [Enhancements On Off] (What's this?)

  • [1] M. Atiyah, R. Bott, and V. K. Patodi, On the heat equation and the index theorem, Invent. Math. 19 (1973), 279-330. MR 0650828 (58 #31287)
  • [2] Dan Barbasch and Henri Moscovici, $ L^{2}$-index and the Selberg trace formula, J. Funct. Anal. 53 (1983), no. 2, 151-201. MR 722507 (85j:58137), https://doi.org/10.1016/0022-1236(83)90050-2
  • [3] Marcel Berger, Paul Gauduchon, and Edmond Mazet, Le spectre d'une variété riemannienne, Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin-New York, 1971 (French). MR 0282313 (43 #8025)
  • [4] Nicole Berline, Ezra Getzler, and Michèle Vergne, Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 298, Springer-Verlag, Berlin, 1992. MR 1215720 (94e:58130)
  • [5] Armand Borel, Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963), 111-122. MR 0146301 (26 #3823)
  • [6] Jochen Brüning and Ernst Heintze, The asymptotic expansion of Minakshisundaram-Pleijel in the equivariant case, Duke Math. J. 51 (1984), no. 4, 959-980. MR 771390 (86b:58124), https://doi.org/10.1215/S0012-7094-84-05143-3
  • [7] Roch Cassanas and Pablo Ramacher, Reduced Weyl asymptotics for pseudodifferential operators on bounded domains. II. The compact group case, J. Funct. Anal. 256 (2009), no. 1, 91-128. MR 2475418 (2009j:58034), https://doi.org/10.1016/j.jfa.2008.01.012
  • [8] W. Casselman, Canonical extensions of Harish-Chandra modules to representations of $ G$, Canad. J. Math. 41 (1989), no. 3, 385-438. MR 1013462 (90j:22013), https://doi.org/10.4153/CJM-1989-019-5
  • [9] E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989. MR 990239 (90e:35123)
  • [10] David L. DeGeorge and Nolan R. Wallach, Limit formulas for multiplicities in $ L^{2}(\Gamma \backslash G)$. II. The tempered spectrum, Ann. of Math. (2) 109 (1979), no. 3, 477-495. MR 534759 (81g:22010), https://doi.org/10.2307/1971222
  • [11] Harold Donnelly, Asymptotic expansions for the compact quotients of properly discontinuous group actions, Illinois J. Math. 23 (1979), no. 3, 485-496. MR 537804 (80h:58049)
  • [12] R. Gangolli, Asymptotic behavior of spectra of compact quotients of certain symmetric spaces, Acta Math. 121 (1968), 151-192. MR 0239000 (39 #360)
  • [13] Harish-Chandra, Harmonic analysis on semisimple Lie groups, Bull. Amer. Math. Soc. 76 (1970), 529-551. MR 0257282 (41 #1933)
  • [14] Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, vol. 34, American Mathematical Society, Providence, RI, 2001. Corrected reprint of the 1978 original. MR 1834454 (2002b:53081)
  • [15] Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. MR 0152974 (27 #2945)
  • [16] R. P. Langlands, Semigroups and representations of Lie groups, Doctoral thesis, Yale University, unpublished, 1960.
  • [17] H. P. McKean Jr. and I. M. Singer, Curvature and the eigenvalues of the Laplacian, J. Differential Geometry 1 (1967), no. 1, 43-69. MR 0217739 (36 #828)
  • [18] Roberto J. Miatello, The Minakshisundaram-Pleijel coefficients for the vector-valued heat kernel on compact locally symmetric spaces of negative curvature, Trans. Amer. Math. Soc. 260 (1980), no. 1, 1-33. MR 570777 (81f:58033), https://doi.org/10.2307/1999874
  • [19] S. Minakshisundaram and Å. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Canadian J. Math. 1 (1949), 242-256. MR 0031145 (11,108b)
  • [20] G. D. Mostow, Intersections of discrete subgroups with Cartan subgroups, J. Indian Math. Soc. 34 (1970), no. 3-4, 203-214 (1971). MR 0492074 (58 #11228)
  • [21] W. Müller, The trace class conjecture in the theory of automorphic forms. II, Geom. Funct. Anal. 8 (1998), no. 2, 315-355. MR 1616155 (99b:11056), https://doi.org/10.1007/s000390050059
  • [22] Peter J. Nicholls, The ergodic theory of discrete groups, London Mathematical Society Lecture Note Series, vol. 143, Cambridge University Press, Cambridge, 1989. MR 1041575 (91i:58104)
  • [23] Juan-Pablo Ortega and Tudor S. Ratiu, Momentum maps and Hamiltonian reduction, Progress in Mathematics, vol. 222, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2021152 (2005a:53144)
  • [24] Aprameyan Parthasarathy and Pablo Ramacher, Integral operators on the Oshima compactification of a Riemannian symmetric space, J. Funct. Anal. 267 (2014), no. 4, 919-962. MR 3217053, https://doi.org/10.1016/j.jfa.2014.05.002
  • [25] Pablo Ramacher, Pseudodifferential operators on prehomogeneous vector spaces, Comm. Partial Differential Equations 31 (2006), no. 4-6, 515-546. MR 2233031 (2008h:22012), https://doi.org/10.1080/03605300500455891
  • [26] Pablo Ramacher, Singular equivariant asymptotics and Weyl's law. On the distribution of eigenvalues of an invariant elliptic operator, to be published in Crelle's Journal, DOI 10.1515/crelle-2014-0008, 2014.
  • [27] Derek W. Robinson, Elliptic operators and Lie groups, Oxford Science Publications, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1991. MR 1144020 (92m:58133)
  • [28] M. A. Shubin, Pseudodifferential operators and spectral theory, 2nd ed., Springer-Verlag, Berlin, 2001. Translated from the 1978 Russian original by Stig I. Andersson. MR 1852334 (2002d:47073)
  • [29] A. F. M. ter Elst and Derek W. Robinson, Elliptic operators on Lie groups, Representations of Lie groups, Lie algebras and their quantum analogues, Acta Appl. Math. 44 (1996), no. 1-2, 133-150. MR 1407043 (97j:22026), https://doi.org/10.1007/BF00116519
  • [30] Nolan R. Wallach, Real reductive groups. I, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1988. MR 929683 (89i:22029)
  • [31] Nolan R. Wallach, Asymptotic expansions of generalized matrix entries of representations of real reductive groups, Lie group representations, I (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1024, Springer, Berlin, 1983, pp. 287-369. MR 727854 (85g:22029), https://doi.org/10.1007/BFb0071436

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 22E46, 53C35, 11F12, 58J40, 58J37, 58J35

Retrieve articles in all journals with MSC (2010): 22E46, 53C35, 11F12, 58J40, 58J37, 58J35


Additional Information

Octavio Paniagua-Taboada
Affiliation: Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Hans- Meerwein-Strasse 1, 35032 Marburg, Germany
Email: paniagua@mathematik.uni-marburg.de

Pablo Ramacher
Affiliation: Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Hans- Meerwein-Strasse 1, 35032 Marburg, Germany
Email: ramacher@mathematik.uni-marburg.de

DOI: https://doi.org/10.1090/tran/6439
Keywords: Equivariant singular asymptotics, heat trace, pseudodifferential operators, locally symmetric spaces
Received by editor(s): March 24, 2012
Received by editor(s) in revised form: October 27, 2013, February 1, 2014, and March 30, 2014
Published electronically: June 3, 2015
Additional Notes: The authors wish to thank Roberto Miatello for his encouragement and many stimulating conversations. This work was financed by the DFG-grant RA 1370/2-1.
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society