Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Bellman function for extremal problems in BMO


Authors: Paata Ivanisvili, Nikolay N. Osipov, Dmitriy M. Stolyarov, Vasily I. Vasyunin and Pavel B. Zatitskiy
Journal: Trans. Amer. Math. Soc. 368 (2016), 3415-3468
MSC (2010): Primary 42A05, 42B35, 49K20
DOI: https://doi.org/10.1090/tran/6460
Published electronically: September 15, 2015
MathSciNet review: 3451882
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We develop a general method for obtaining sharp integral estimates on BMO. Each such estimate gives rise to a Bellman function, and we show that for a large class of integral functionals, this function is a solution of a homogeneous Monge-Ampère boundary-value problem on a parabolic plane domain. Furthermore, we elaborate an essentially geometric algorithm for solving this boundary-value problem. This algorithm produces the exact Bellman function of the problem along with the optimizers in the inequalities being proved. The method presented subsumes several previous Bellman-function results for BMO, including the sharp John-Nirenberg inequality and sharp estimates of $ L^p$-norms of BMO functions.


References [Enhancements On Off] (What's this?)

  • [1] D. L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms, Ann. Probab. 12 (1984), no. 3, 647-702. MR 744226 (86b:60080)
  • [2] Martin Dindoš and Treven Wall, The sharp $ A_p$ constant for weights in a reverse-Hölder class, Rev. Mat. Iberoam. 25 (2009), no. 2, 559-594. MR 2569547 (2011b:42041), https://doi.org/10.4171/RMI/576
  • [3] Paata Ivanishvili, Nikolay N. Osipov, Dmitriy M. Stolyarov, Vasily I. Vasyunin, and Pavel B. Zatitskiy, On Bellman function for extremal problems in BMO, C. R. Math. Acad. Sci. Paris 350 (2012), no. 11-12, 561-564 (English, with English and French summaries). MR 2956143, https://doi.org/10.1016/j.crma.2012.06.011
  • [4] P. Ivanishvili, N. N. Osipov, D. M. Stolyarov, V. I. Vasyunin, P. B. Zatitskiy, Bellman function for extremal problems in BMO, preprint, 91pp., http://arxiv.org/abs/1205.7018; Russian version: http://www.pdmi.ras.ru/preprint/2011/rus-2011.html and http://www.pdmi.ras.ru/ preprint/2012/rus-2012.html.
  • [5] Ivo Klemes, A mean oscillation inequality, Proc. Amer. Math. Soc. 93 (1985), no. 3, 497-500. MR 774010 (86c:26024), https://doi.org/10.2307/2045621
  • [6] Paul Koosis, Introduction to $ H_p$ spaces, 2nd ed., with two appendices by V. P. Havin [Viktor Petrovich Khavin], Cambridge Tracts in Mathematics, vol. 115, Cambridge University Press, Cambridge, 1998. MR 1669574 (2000b:30052)
  • [7] A. A. Korenovskiĭ, The connection between mean oscillations and exact exponents of summability of functions, Mat. Sb. 181 (1990), no. 12, 1721-1727 (Russian); English transl., Math. USSR-Sb. 71 (1992), no. 2, 561-567. MR 1099524 (92b:26019)
  • [8] A. A. Logunov, L. Slavin, D. M. Stolyarov, V. Vasyunin, and P. B. Zatitskiy, Weak integral conditions for BMO, Proc. Amer. Math. Soc. 143 (2015), no. 7, 2913-2926. MR 3336616, https://doi.org/10.1090/S0002-9939-2015-12424-0
  • [9] F. L. Nazarov and S. R. Treĭl, The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis, Algebra i Analiz 8 (1996), no. 5, 32-162 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 8 (1997), no. 5, 721-824. MR 1428988 (99d:42026)
  • [10] F. Nazarov, S. Treil, and A. Volberg, The Bellman functions and two-weight inequalities for Haar multipliers, J. Amer. Math. Soc. 12 (1999), no. 4, 909-928. MR 1685781 (2000k:42009), https://doi.org/10.1090/S0894-0347-99-00310-0
  • [11] F. Nazarov, S. Treil, and A. Volberg, Bellman function in stochastic control and harmonic analysis, Systems, approximation, singular integral operators, and related topics (Bordeaux, 2000) Oper. Theory Adv. Appl., vol. 129, Birkhäuser, Basel, 2001, pp. 393-423. MR 1882704 (2003b:49024)
  • [12] Adam Osekowski, Sharp martingale and semimartingale inequalities, Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)], vol. 72, Birkhäuser/Springer Basel AG, Basel, 2012. MR 2964297
  • [13] A. V. Pogorelov, Differential geometry, Translated from the first Russian ed. by L. F. Boron, P. Noordhoff N. V., Groningen, 1959. MR 0114163 (22 #4990)
  • [14] Alexander Reznikov, Sharp weak type estimates for weights in the class $ A_{p_1,p_2}$, Rev. Mat. Iberoam. 29 (2013), no. 2, 433-478. MR 3047424, https://doi.org/10.4171/RMI/726
  • [15] Leonid Slavin, Bellman function and BMO, ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)-Michigan State University, 2004. MR 2706427
  • [16] Leonid Slavin, Alexander Stokolos, and Vasily Vasyunin, Monge-Ampère equations and Bellman functions: the dyadic maximal operator, C. R. Math. Acad. Sci. Paris 346 (2008), no. 9-10, 585-588 (English, with English and French summaries). MR 2412802 (2009c:42036), https://doi.org/10.1016/j.crma.2008.03.003
  • [17] L. Slavin and V. Vasyunin, Sharp results in the integral-form John-Nirenberg inequality, Trans. Amer. Math. Soc. 363 (2011), no. 8, 4135-4169. MR 2792983 (2012c:42005), https://doi.org/10.1090/S0002-9947-2011-05112-3
  • [18] Leonid Slavin and Vasily Vasyunin, Sharp $ L^p$ estimates on BMO, Indiana Univ. Math. J. 61 (2012), no. 3, 1051-1110. MR 3071693, https://doi.org/10.1512/iumj.2012.61.4651
  • [19] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, with the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. MR 1232192 (95c:42002)
  • [20] V. Vasyunin, The sharp constant in the John-Nirenberg inequality, preprint POMI no. 20, 2003; http://www.pdmi.ras.ru/preprint/2003/index.html
  • [21] V. I. Vasyunin, The exact constant in the inverse Hölder inequality for Muckenhoupt weights, Algebra i Analiz 15 (2003), no. 1, 73-117 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 15 (2004), no. 1, 49-79. MR 1979718 (2004h:42017), https://doi.org/10.1090/S1061-0022-03-00802-1
  • [22] V. I. Vasyunin, Mutual estimates for $ L^p$-norms and the Bellman function, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 355 (2008), Issledovaniya po Lineinym Operatoram i Teorii Funktsii. 36, 81-138, 237-238 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N. Y.) 156 (2009), no. 5, 766-798. MR 2744535 (2012b:42040), https://doi.org/10.1007/s10958-009-9288-3
  • [23] V. Vasyunin, Sharp constants in the classical weak form of the John-Nirenberg inequality, preprint POMI, no. 10, 2011, 1-9; http://www.pdmi.ras.ru/preprint/2011/eng-2011.html
  • [24] V. Vasyunin and A. Volberg, The Bellman function for the simplest two-weight inequality: an investigation of a particular case, Algebra i Analiz 18 (2006), no. 2, 24-56 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 18 (2007), no. 2, 201-222. MR 2244935 (2007k:47053), https://doi.org/10.1090/S1061-0022-07-00953-3
  • [25] Vasily Vasyunin and Alexander Volberg, Monge-Ampère equation and Bellman optimization of Carleson embedding theorems, Linear and complex analysis, Amer. Math. Soc. Transl. Ser. 2, vol. 226, Amer. Math. Soc., Providence, RI, 2009, pp. 195-238. MR 2500520 (2011f:42027)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 42A05, 42B35, 49K20

Retrieve articles in all journals with MSC (2010): 42A05, 42B35, 49K20


Additional Information

Paata Ivanisvili
Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
Email: ivanishvili.paata@gmail.com

Nikolay N. Osipov
Affiliation: St. Petersburg Department of Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, St. Petersburg, Russia
Email: nicknick@pdmi.ras.ru

Dmitriy M. Stolyarov
Affiliation: Chebyshev Laboratory, SPbU, 14th Line 29B, Vasilyevsky Island, St. Petersburg, Russia – and – St. Petersburg Department of Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, St. Petersburg, Russia
Email: dms@pdmi.ras.ru

Vasily I. Vasyunin
Affiliation: St. Petersburg Department of Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, St. Petersburg, Russia
Email: vasyunin@pdmi.ras.ru

Pavel B. Zatitskiy
Affiliation: Chebyshev Laboratory, SPbU, 14th Line 29B, Vasilyevsky Island, St. Petersburg, Russia – and – St. Petersburg Department of Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, St. Petersburg, Russia
Email: paxa239@yandex.ru

DOI: https://doi.org/10.1090/tran/6460
Received by editor(s): December 25, 2013
Received by editor(s) in revised form: March 17, 2014
Published electronically: September 15, 2015
Additional Notes: The first author was supported by Chebyshev Laboratory of SPbU (RF Government grant No. 11.G34.31.0026)
The second author was supported by Chebyshev Laboratory of SPbU (RF Government grant No. 11.G34.31.0026), by RFBR (grant No. 11-01-00526), and by a Rokhlin grant.
The third author was supported by Chebyshev Laboratory of SPbU (RF Government grant No. 11.G34.31.0026) and by RFBR (grant No. 11-01-00526).
The fourth author was supported by RFBR (grant No. 11-01-00584).
The fifth author was supported by Chebyshev Laboratory of SPbU (RF Government grant No. 11.G34.31.0026) and by a Rokhlin grant.
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society