Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On accumulated spectrograms


Authors: Luís Daniel Abreu, Karlheinz Gröchenig and José Luis Romero
Journal: Trans. Amer. Math. Soc. 368 (2016), 3629-3649
MSC (2010): Primary 81S30, 45P05, 94A12, 42C25, 42C40
DOI: https://doi.org/10.1090/tran/6517
Published electronically: April 8, 2015
MathSciNet review: 3451888
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the eigenvalues and eigenfunctions of the time-frequency localization operator $ H_\Omega $ on a domain $ \Omega $ of the time-frequency plane. The eigenfunctions are the appropriate prolate spheroidal functions for an arbitrary domain $ \Omega \subseteq \mathbb{R}^{2d}$. Indeed, in analogy to the classical theory of Landau-Pollak-Slepian, the number of eigenvalues of $ H_\Omega $ in $ [1-\delta , 1]$ is equal to the measure of $ \Omega $ up to an error term depending on the perimeter of the boundary of $ \Omega $. Our main results show that the spectrograms of the eigenfunctions corresponding to the large eigenvalues (which we call the accumulated spectrogram) form an approximate partition of unity of the given domain $ \Omega $. We derive asymptotic, non-asymptotic, and weak-$ L^2$ error estimates for the accumulated spectrogram. As a consequence the domain $ \Omega $ can be approximated solely from the spectrograms of eigenfunctions without information about their phase.


References [Enhancements On Off] (What's this?)

  • [1] Luís Daniel Abreu and Monika Dörfler, An inverse problem for localization operators, Inverse Problems 28 (2012), no. 11, 115001, 16. MR 2981726, https://doi.org/10.1088/0266-5611/28/11/115001
  • [2] Radu Balan, Bernhard G. Bodmann, Peter G. Casazza, and Dan Edidin, Painless reconstruction from magnitudes of frame coefficients, J. Fourier Anal. Appl. 15 (2009), no. 4, 488-501. MR 2549940 (2010m:42066), https://doi.org/10.1007/s00041-009-9065-1
  • [3] P. A. Bello, Measurement of random time-variant linear channels, IEEE Trans. Inform. Theory 15 (1969), no. 4, 469-475.
  • [4] J. Ben Hough, Manjunath Krishnapur, Yuval Peres, and Bálint Virág, Zeros of Gaussian analytic functions and determinantal point processes, University Lecture Series, vol. 51, American Mathematical Society, Providence, RI, 2009. MR 2552864 (2011f:60090)
  • [5] Paolo Boggiatto, Elena Cordero, and Karlheinz Gröchenig, Generalized anti-Wick operators with symbols in distributional Sobolev spaces, Integral Equations Operator Theory 48 (2004), no. 4, 427-442. MR 2047590 (2005a:47088), https://doi.org/10.1007/s00020-003-1244-x
  • [6] Elena Cordero and Karlheinz Gröchenig, Time-frequency analysis of localization operators, J. Funct. Anal. 205 (2003), no. 1, 107-131. MR 2020210 (2004j:47100), https://doi.org/10.1016/S0022-1236(03)00166-6
  • [7] Ingrid Daubechies, Time-frequency localization operators: a geometric phase space approach, IEEE Trans. Inform. Theory 34 (1988), no. 4, 605-612. MR 966733, https://doi.org/10.1109/18.9761
  • [8] Ingrid Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory 36 (1990), no. 5, 961-1005. MR 1066587 (91e:42038), https://doi.org/10.1109/18.57199
  • [9] Percy Deift, Universality for mathematical and physical systems, International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, pp. 125-152. MR 2334189 (2008g:60024), https://doi.org/10.4171/022-1/7
  • [10] F. De Mari, H. G. Feichtinger, and K. Nowak, Uniform eigenvalue estimates for time-frequency localization operators, J. London Math. Soc. (2) 65 (2002), no. 3, 720-732. MR 1895743 (2003c:47048), https://doi.org/10.1112/S0024610702003101
  • [11] Jingde Du, M. W. Wong, and Zhaohui Zhang, Trace class norm inequalities for localization operators, Integral Equations Operator Theory 41 (2001), no. 4, 497-503. MR 1857804 (2002f:47069), https://doi.org/10.1007/BF01202106
  • [12] Miroslav Engliš, Toeplitz operators and localization operators, Trans. Amer. Math. Soc. 361 (2009), no. 2, 1039-1052. MR 2452833 (2010a:47056), https://doi.org/10.1090/S0002-9947-08-04547-9
  • [13] Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660 (93f:28001)
  • [14] Hans G. Feichtinger, Modulation spaces: looking back and ahead, Sampl. Theory Signal Image Process. 5 (2006), no. 2, 109-140. MR 2233968 (2007j:43003)
  • [15] H. G. Feichtinger and K. Nowak, A Szegő-type theorem for Gabor-Toeplitz localization operators, Michigan Math. J. 49 (2001), no. 1, 13-21. MR 1827072 (2003b:47049), https://doi.org/10.1307/mmj/1008719032
  • [16] Yevgeniy V. Galperin and Karlheinz Gröchenig, Uncertainty principles as embeddings of modulation spaces, J. Math. Anal. Appl. 274 (2002), no. 1, 181-202. MR 1936693 (2003h:46040), https://doi.org/10.1016/S0022-247X(02)00279-2
  • [17] Jean Ginibre, Statistical ensembles of complex, quaternion, and real matrices, J. Mathematical Phys. 6 (1965), 440-449. MR 0173726 (30 #3936)
  • [18] Karlheinz Gröchenig, Foundations of time-frequency analysis, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2001. MR 1843717 (2002h:42001)
  • [19] C. Heil, J. Ramanathan, and P. Topiwala, Asymptotic Singular Value Decay of Time-frequency Localization Operators,
    in ``Wavelet Applications in Signal and Image Processing II, Proc. SPIE'', Vol.2303 (1994) pp.15-24.
  • [20] C. Heil, J. Ramanathan, and P. Topiwala, Singular values of compact pseudodifferential operators, J. Funct. Anal. 150 (1997), no. 2, 426-452. MR 1479546 (98k:47102), https://doi.org/10.1006/jfan.1997.3127
  • [21] T. Kailath, Measurements on time-variant communication channels, IEEE Trans. Inform. Theory 8 (1962), no. 5, 229-236.
  • [22] H. J. Landau, Sampling, data transmission, and the Nyquist rate, Proc. IEEE 55 (1967), no. 10, 1701-1706.
  • [23] H. J. Landau, Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math. 117 (1967), 37-52. MR 0222554 (36 #5604)
  • [24] H. J. Landau, On Szegő's eigenvalue distribution theorem and non-Hermitian kernels, J. Analyse Math. 28 (1975), 335-357. MR 0487600 (58 #7219)
  • [25] H. J. Landau and H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty. II, Bell System Tech. J. 40 (1961), 65-84. MR 0140733 (25 #4147)
  • [26] H. J. Landau and H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty. III. The dimension of the space of essentially time- and band-limited signals., Bell System Tech. J. 41 (1962), 1295-1336. MR 0147686 (26 #5200)
  • [27] H. J. Landau and H. Widom, Eigenvalue distribution of time and frequency limiting, J. Math. Anal. Appl. 77 (1980), no. 2, 469-481. MR 593228 (81m:45023), https://doi.org/10.1016/0022-247X(80)90241-3
  • [28] Elliott H. Lieb, Integral bounds for radar ambiguity functions and Wigner distributions, J. Math. Phys. 31 (1990), no. 3, 594-599. MR 1039210 (91f:81076), https://doi.org/10.1063/1.528894
  • [29] D. G. Mixon, Phase Transitions in Phase Retrieval, arXiv:1403.1458.
  • [30] Götz E. Pfander, Measurement of time-varying multiple-input multiple-output channels, Appl. Comput. Harmon. Anal. 24 (2008), no. 3, 393-401. MR 2406878 (2009e:94039), https://doi.org/10.1016/j.acha.2007.09.006
  • [31] Götz E. Pfander and David F. Walnut, Measurement of time-variant linear channels, IEEE Trans. Inform. Theory 52 (2006), no. 11, 4808-4820. MR 2300357 (2008a:94096), https://doi.org/10.1109/TIT.2006.883553
  • [32] Jayakumar Ramanathan and Pankaj Topiwala, Time-frequency localization via the Weyl correspondence, SIAM J. Math. Anal. 24 (1993), no. 5, 1378-1393. MR 1234023 (95b:94012), https://doi.org/10.1137/0524080
  • [33] Jayakumar Ramanathan and Pankaj Topiwala, Time-frequency localization and the spectrogram, Appl. Comput. Harmon. Anal. 1 (1994), no. 2, 209-215. MR 1310645 (96b:94003), https://doi.org/10.1006/acha.1994.1008
  • [34] Benjamin Ricaud and Bruno Torrésani, A survey of uncertainty principles and some signal processing applications, Adv. Comput. Math. 40 (2014), no. 3, 629-650. MR 3265736
  • [35] Barry Simon, Trace ideals and their applications, London Mathematical Society Lecture Note Series, vol. 35, Cambridge University Press, Cambridge-New York, 1979. MR 541149 (80k:47048)
  • [36] D. Slepian and H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty. I, Bell System Tech. J. 40 (1961), 43-63. MR 0140732 (25 #4146)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 81S30, 45P05, 94A12, 42C25, 42C40

Retrieve articles in all journals with MSC (2010): 81S30, 45P05, 94A12, 42C25, 42C40


Additional Information

Luís Daniel Abreu
Affiliation: Acoustics Research Institute, Austrian Academy of Science, Wohllebengasse 12-14 A-1040, Vienna, Austria
Email: daniel@mat.uc.pt

Karlheinz Gröchenig
Affiliation: Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria
Email: karlheinz.groechenig@univie.ac.at

José Luis Romero
Affiliation: Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria
Email: jose.luis.romero@univie.ac.at

DOI: https://doi.org/10.1090/tran/6517
Received by editor(s): April 30, 2014
Received by editor(s) in revised form: June 16, 2014
Published electronically: April 8, 2015
Additional Notes: The first author was supported by the Austrian Science Fund (FWF) START-project FLAME (“Frames and Linear Operators for Acoustical Modeling and Parameter Estimation”) 551-N13
The second author was supported in part by the project P26273-N25 and the National Research Network S106 SISE of the Austrian Science Fund (FWF)
The third author gratefully acknowledges support by the project M1586-N25 of the Austrian Science Fund (FWF)
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society