Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications


Authors: Léonard Gallardo and Chaabane Rejeb
Journal: Trans. Amer. Math. Soc. 368 (2016), 3727-3753
MSC (2010): Primary 31B05, 43A32, 42B99, 33C52; Secondary 51F15, 33C80, 47B38
DOI: https://doi.org/10.1090/tran/6671
Published electronically: May 22, 2015
MathSciNet review: 3451892
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a root system in $ \mathbb{R}^d$ furnished with its Coxeter-Weyl group $ W$ and a multiplicity nonnegative function $ k$, we consider the associated commuting system of Dunkl operators $ D_1,\ldots ,D_d$ and the Dunkl-Laplacian $ \Delta _k=D^{2}_{1}+\ldots +D^{2}_{d}$. This paper studies the properties of the functions $ u$ defined on an open $ W$-invariant set $ \Omega \subset \mathbb{R}^d$ and satisfying $ \Delta _k u=0$ on $ \Omega $ (D-harmonicity). In particular, we introduce and give a complete study of a new mean value operator which characterizes D-harmonicity. As applications we prove a strong maximum principle, a Harnack's type theorem and a Bôcher's theorem for D-harmonic functions.


References [Enhancements On Off] (What's this?)

  • [1] Sheldon Axler, Paul Bourdon, and Wade Ramey, Harmonic function theory, 2nd ed., Graduate Texts in Mathematics, vol. 137, Springer-Verlag, New York, 2001. MR 1805196 (2001j:31001)
  • [2] Charles F. Dunkl, Reflection groups and orthogonal polynomials on the sphere, Math. Z. 197 (1988), no. 1, 33-60. MR 917849 (89b:42016), https://doi.org/10.1007/BF01161629
  • [3] Charles F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), no. 1, 167-183. MR 951883 (90k:33027), https://doi.org/10.2307/2001022
  • [4] Charles F. Dunkl, Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991), no. 6, 1213-1227. MR 1145585 (93g:33012), https://doi.org/10.4153/CJM-1991-069-8
  • [5] Charles F. Dunkl, Hankel transforms associated to finite reflection groups, Hypergeometric functions on domains of positivity, Jack polynomials, and applications (Tampa, FL, 1991) Contemp. Math., vol. 138, Amer. Math. Soc., Providence, RI, 1992, pp. 123-138. MR 1199124 (94g:33011), https://doi.org/10.1090/conm/138/1199124
  • [6] Charles F. Dunkl and Yuan Xu, Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, vol. 81, Cambridge University Press, Cambridge, 2001. MR 1827871 (2002m:33001)
  • [7] Pavel Etingof, A uniform proof of the Macdonald-Mehta-Opdam identity for finite Coxeter groups, Math. Res. Lett. 17 (2010), no. 2, 275-282. MR 2644375 (2011j:33031), https://doi.org/10.4310/MRL.2010.v17.n2.a7
  • [8] Léonard Gallardo and Laurent Godefroy, Propriété de Liouville et équation de Poisson pour le laplacien généralisé de Dunkl, C. R. Math. Acad. Sci. Paris 337 (2003), no. 10, 639-644 (French, with English and French summaries). MR 2030103 (2004j:35286), https://doi.org/10.1016/j.crma.2003.09.032
  • [9] James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460 (92h:20002)
  • [10] H. Mejjaoli and K. Trimèche, On a mean value property associated with the Dunkl Laplacian operator and applications, Integral Transform. Spec. Funct. 12 (2001), no. 3, 279-302. MR 1872437 (2003a:33028), https://doi.org/10.1080/10652460108819351
  • [11] M. F. E. de Jeu, The Dunkl transform, Invent. Math. 113 (1993), no. 1, 147-162. MR 1223227 (94m:22011), https://doi.org/10.1007/BF01244305
  • [12] M. Maslouhi and E. H. Youssfi, Harmonic functions associated to Dunkl operators, Monatsh. Math. 152 (2007), no. 4, 337-345. MR 2358303 (2009e:31009), https://doi.org/10.1007/s00605-007-0475-3
  • [13] E. M. Opdam, Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group, Compositio Math. 85 (1993), no. 3, 333-373. MR 1214452 (95j:33044)
  • [14] Margit Rösler, Generalized Hermite polynomials and the heat equation for Dunkl operators, Comm. Math. Phys. 192 (1998), no. 3, 519-542. MR 1620515 (99k:33048), https://doi.org/10.1007/s002200050307
  • [15] Margit Rösler, Positivity of Dunkl's intertwining operator, Duke Math. J. 98 (1999), no. 3, 445-463. MR 1695797 (2000f:33013), https://doi.org/10.1215/S0012-7094-99-09813-7
  • [16] Margit Rösler, A positive radial product formula for the Dunkl kernel, Trans. Amer. Math. Soc. 355 (2003), no. 6, 2413-2438 (electronic). MR 1973996 (2005g:33022), https://doi.org/10.1090/S0002-9947-03-03235-5
  • [17] Margit Rösler, Dunkl operators: theory and applications, Orthogonal polynomials and special functions (Leuven, 2002) Lecture Notes in Math., vol. 1817, Springer, Berlin, 2003, pp. 93-135. MR 2022853 (2004k:33024), https://doi.org/10.1007/3-540-44945-0_3
  • [18] Khalifa Trimèche, The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual, Integral Transform. Spec. Funct. 12 (2001), no. 4, 349-374. MR 1872375 (2002m:33012), https://doi.org/10.1080/10652460108819358
  • [19] Khalifa Trimèche, Paley-Wiener theorems for the Dunkl transform and Dunkl translation operators, Integral Transforms Spec. Funct. 13 (2002), no. 1, 17-38. MR 1914125 (2004e:44006), https://doi.org/10.1080/10652460212888
  • [20] Hans Volkmer, Generalized ellipsoidal and sphero-conal harmonics, SIGMA Symmetry Integrability Geom. Methods Appl. 2 (2006), Paper 071, 16 pp.. MR 2264887 (2007i:35034), https://doi.org/10.3842/SIGMA.2006.071
  • [21] Hans Volkmer, External ellipsoidal harmonics for the Dunkl-Laplacian, SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008), Paper 091, 13 pp.. MR 2470505 (2009m:33025), https://doi.org/10.3842/SIGMA.2008.091

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 31B05, 43A32, 42B99, 33C52, 51F15, 33C80, 47B38

Retrieve articles in all journals with MSC (2010): 31B05, 43A32, 42B99, 33C52, 51F15, 33C80, 47B38


Additional Information

Léonard Gallardo
Affiliation: Laboratoire de Mathématiques et Physique Théorique CNRS-UMR 7350, Université de Tours, Campus de Grandmont, 37200 Tours, France
Email: Leonard.Gallardo@lmpt.univ-tours.fr

Chaabane Rejeb
Affiliation: Département de Mathématiques, Faculté des Sciences de Tunis, 1060 Tunis, Tunisie – and – Laboratoire de Mathématiques et Physique Théorique CNRS-UMR 7350, Université de Tours, Campus de Grandmont, 37200 Tours, France
Email: chaabane.rejeb@gmail.com

DOI: https://doi.org/10.1090/tran/6671
Keywords: Dunkl-Laplacian operator, Dunkl transform, Dunkl harmonic functions, generalized volume mean value operator, strong maximum principle, Harnack's inequality, B\^ocher's theorem
Received by editor(s): February 25, 2014
Received by editor(s) in revised form: January 19, 2015
Published electronically: May 22, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society