Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Relativistic Chern-Simons-Higgs vortex equations


Authors: Xiaosen Han and Yisong Yang
Journal: Trans. Amer. Math. Soc. 368 (2016), 3565-3590
MSC (2010): Primary 35C08, 35J50, 35Q70
DOI: https://doi.org/10.1090/tran/6746
Published electronically: August 20, 2015
MathSciNet review: 3451886
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An existence theorem is established for the solutions to the non-Abelian relativistic Chern-Simons-Higgs vortex equations over a doubly periodic domain when the gauge group $ G$ assumes the most general and important prototype form, $ G=SU(N)$.


References [Enhancements On Off] (What's this?)

  • [1] A. A. Abrikosov, On the magnetic properties of superconductors of the second group, Sov. Phys. JETP 5 (1957) 1174-1182.
  • [2] Thierry Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252, Springer-Verlag, New York, 1982. MR 681859 (85j:58002)
  • [3] Haïm Brezis and Frank Merle, Uniform estimates and blow-up behavior for solutions of $ -\Delta u=V(x)e^u$ in two dimensions, Comm. Partial Differential Equations 16 (1991), no. 8-9, 1223-1253. MR 1132783 (92m:35084), https://doi.org/10.1080/03605309108820797
  • [4] Luis A. Caffarelli and Yi Song Yang, Vortex condensation in the Chern-Simons Higgs model: an existence theorem, Comm. Math. Phys. 168 (1995), no. 2, 321-336. MR 1324400 (96b:81076)
  • [5] Eugenio Calabi, Isometric imbedding of complex manifolds, Ann. of Math. (2) 58 (1953), 1-23. MR 0057000 (15,160c)
  • [6] Sun-Yung Alice Chang and Paul C. Yang, Prescribing Gaussian curvature on $ S^2$, Acta Math. 159 (1987), no. 3-4, 215-259. MR 908146 (88m:35056), https://doi.org/10.1007/BF02392560
  • [7] Chiun-Chuan Chen and Chang-Shou Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Comm. Pure Appl. Math. 55 (2002), no. 6, 728-771. MR 1885666 (2003d:53056), https://doi.org/10.1002/cpa.3014
  • [8] Chiun-Chuan Chen and Chang-Shou Lin, Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math. 56 (2003), no. 12, 1667-1727. MR 2001443 (2004h:35065), https://doi.org/10.1002/cpa.10107
  • [9] Chiun-Chuan Chen and Chang-Shou Lin, Mean field equations of Liouville type with singular data: sharper estimates, Discrete Contin. Dyn. Syst. 28 (2010), no. 3, 1237-1272. MR 2644788 (2011d:35155), https://doi.org/10.3934/dcds.2010.28.1237
  • [10] Wen Xiong Chen and Congming Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991), no. 3, 615-622. MR 1121147 (93e:35009), https://doi.org/10.1215/S0012-7094-91-06325-8
  • [11] Wen Xiong Chen and Congming Li, Qualitative properties of solutions to some nonlinear elliptic equations in $ {\bf R}^2$, Duke Math. J. 71 (1993), no. 2, 427-439. MR 1233443 (94f:35046), https://doi.org/10.1215/S0012-7094-93-07117-7
  • [12] Kuo-Shung Cheng and Wei-Ming Ni, On the structure of the conformal Gaussian curvature equation on $ {\bf R}^2$, Duke Math. J. 62 (1991), no. 3, 721-737. MR 1104815 (92f:35061), https://doi.org/10.1215/S0012-7094-91-06231-9
  • [13] Gerald Dunne, Chern-Simons solitons, Toda theories and the chiral model, Comm. Math. Phys. 150 (1992), no. 3, 519-535. MR 1204317 (94f:81102)
  • [14] G. Dunne, Self-Dual Chern-Simons Theories, Lecture Notes in Physics, vol. m 36, Springer, Berlin, 1995.
  • [15] Gerald Dunne, Mass degeneracies in self-dual models, Phys. Lett. B 345 (1995), no. 4, 452-457. MR 1318189 (95k:81120), https://doi.org/10.1016/0370-2693(94)01649-W
  • [16] Gerald V. Dunne, R. Jackiw, So-Young Pi, and Carlo A. Trugenberger, Self-dual Chern-Simons solitons and two-dimensional nonlinear equations, Phys. Rev. D (3) 43 (1991), no. 4, (Research Group in Mathematical Physics: 1332-1345. MR 1104647 (92g:81120), https://doi.org/10.1103/PhysRevD.43.1332
  • [17] Luigi Fontana, Sharp borderline Sobolev inequalities on compact Riemannian manifolds, Comment. Math. Helv. 68 (1993), no. 3, 415-454. MR 1236762 (94h:46048), https://doi.org/10.1007/BF02565828
  • [18] R. G. M$ \cup \phi $ (Research Group in Mathematical Physics: J. Fröhlich, speaker and coordinator), The fractional quantum Hall effect, Chern-Simons theory, and integral lattices, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 75-105. MR 1403916 (97m:81047)
  • [19] J. Fröhlich and P. A. Marchetti, Quantum field theory of anyons, Lett. Math. Phys. 16 (1988), no. 4, 347-358. MR 974482 (90b:81070), https://doi.org/10.1007/BF00402043
  • [20] J. Fröhlich and P. A. Marchetti, Quantum field theories of vortices and anyons, Comm. Math. Phys. 121 (1989), no. 2, 177-223. MR 985396 (90k:81118)
  • [21] N. Ganoulis, Quantum Toda systems and Lax pairs, Comm. Math. Phys. 109 (1987), no. 1, 23-32. MR 879031 (88k:58048)
  • [22] N. Ganoulis, P. Goddard, and D. Olive, Self-dual monopoles and Toda molecules, Nuclear Phys. B 205 (1982), no. 4, 601-636. MR 668990 (84c:81045), https://doi.org/10.1016/0550-3213(82)90080-3
  • [23] X. Han, C. S. Lin, and Y. Yang, Resolution of Chern-Simons-Higgs vortex equations, Commun. Math. Phys., submitted.
  • [24] Jooyoo Hong, Yoonbai Kim, and Pong Youl Pac, Multivortex solutions of the abelian Chern-Simons-Higgs theory, Phys. Rev. Lett. 64 (1990), no. 19, 2230-2233. MR 1050529 (91a:81115), https://doi.org/10.1103/PhysRevLett.64.2230
  • [25] Peter A. Horvathy and Pengming Zhang, Vortices in (abelian) Chern-Simons gauge theory, Phys. Rep. 481 (2009), no. 5-6, 83-142. MR 2552374 (2011c:58036), https://doi.org/10.1016/j.physrep.2009.07.003
  • [26] R. Jackiw and Erick J. Weinberg, Self-dual Chern-Simons vortices, Phys. Rev. Lett. 64 (1990), no. 19, 2234-2237. MR 1050530 (91a:81117), https://doi.org/10.1103/PhysRevLett.64.2234
  • [27] Jürgen Jost, Changshou Lin, and Guofang Wang, Analytic aspects of the Toda system. II. Bubbling behavior and existence of solutions, Comm. Pure Appl. Math. 59 (2006), no. 4, 526-558. MR 2199785 (2007h:35099), https://doi.org/10.1002/cpa.20099
  • [28] Jürgen Jost and Guofang Wang, Classification of solutions of a Toda system in $ {\mathbb{R}}^2$, Int. Math. Res. Not. 6 (2002), 277-290. MR 1877003 (2003a:35062), https://doi.org/10.1155/S1073792802105022
  • [29] Jerry L. Kazdan and F. W. Warner, Curvature functions for compact $ 2$-manifolds, Ann. of Math. (2) 99 (1974), 14-47. MR 0343205 (49 #7949)
  • [30] Jerry L. Kazdan and F. W. Warner, Curvature functions for open $ 2$-manifolds, Ann. of Math. (2) 99 (1974), 203-219. MR 0343206 (49 #7950)
  • [31] Bertram Kostant, The solution to a generalized Toda lattice and representation theory, Adv. in Math. 34 (1979), no. 3, 195-338. MR 550790 (82f:58045), https://doi.org/10.1016/0001-8708(79)90057-4
  • [32] A. N. Leznov, On complete integrability of a nonlinear system of partial differential equations in two-dimensional space, Teoret. Mat. Fiz. 42 (1980), no. 3, 343-349 (Russian, with English summary). MR 569026 (82e:58047)
  • [33] A. N. Leznov and M. V. Saveliev, Representation of zero curvature for the system of nonlinear partial differential equations $ x_{\alpha ,z\bar z}={\rm exp}(kx)_{\alpha }$ and its integrability, Lett. Math. Phys. 3 (1979), no. 6, 489-494. MR 555332 (82k:58045), https://doi.org/10.1007/BF00401930
  • [34] A. N. Leznov and M. V. Saveliev, Representation theory and integration of nonlinear spherically symmetric equations to gauge theories, Comm. Math. Phys. 74 (1980), no. 2, 111-118. MR 576266 (81h:81073)
  • [35] Yan Yan Li, Harnack type inequality: the method of moving planes, Comm. Math. Phys. 200 (1999), no. 2, 421-444. MR 1673972 (2000c:58024), https://doi.org/10.1007/s002200050536
  • [36] Chang-Shou Lin, Juncheng Wei, and Dong Ye, Classification and nondegeneracy of $ SU(n+1)$ Toda system with singular sources, Invent. Math. 190 (2012), no. 1, 169-207. MR 2969276, https://doi.org/10.1007/s00222-012-0378-3
  • [37] Chang-Shou Lin and Lei Zhang, Profile of bubbling solutions to a Liouville system, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), no. 1, 117-143 (English, with English and French summaries). MR 2580507 (2011a:35118), https://doi.org/10.1016/j.anihpc.2009.09.001
  • [38] J. Liouville, Sur l'équation aux différences partielles $ \frac {d^2 \log \lambda }{du dv}\pm \frac \lambda {2a^2}=0$, J. de Mathématiques Pures et Appl 18 (1853), 71-72.
  • [39] Andrea Malchiodi, Topological methods for an elliptic equation with exponential nonlinearities, Discrete Contin. Dyn. Syst. 21 (2008), no. 1, 277-294. MR 2379466 (2009a:35014), https://doi.org/10.3934/dcds.2008.21.277
  • [40] Andrea Malchiodi and Cheikh Birahim Ndiaye, Some existence results for the Toda system on closed surfaces, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 18 (2007), no. 4, 391-412. MR 2349995 (2008h:35064), https://doi.org/10.4171/RLM/504
  • [41] Andrea Malchiodi and David Ruiz, A variational analysis of the Toda system on compact surfaces, Comm. Pure Appl. Math. 66 (2013), no. 3, 332-371. MR 3008227, https://doi.org/10.1002/cpa.21433
  • [42] A. V. Mikhaĭlov, M. A. Olshanetsky, and A. M. Perelomov, Two-dimensional generalized Toda lattice, Comm. Math. Phys. 79 (1981), no. 4, 473-488. MR 623963 (83a:58051)
  • [43] Margherita Nolasco and Gabriella Tarantello, On a sharp Sobolev-type inequality on two-dimensional compact manifolds, Arch. Ration. Mech. Anal. 145 (1998), no. 2, 161-195. MR 1664542 (2000j:58021), https://doi.org/10.1007/s002050050127
  • [44] Margherita Nolasco and Gabriella Tarantello, Vortex condensates for the $ {\rm SU}(3)$ Chern-Simons theory, Comm. Math. Phys. 213 (2000), no. 3, 599-639. MR 1785431 (2001j:58025), https://doi.org/10.1007/s002200000252
  • [45] Hiroshi Ohtsuka and Takashi Suzuki, Blow-up analysis for $ {\rm SU}(3)$ Toda system, J. Differential Equations 232 (2007), no. 2, 419-440. MR 2286386 (2007k:58027), https://doi.org/10.1016/j.jde.2006.09.003
  • [46] P. Olesen, Soliton condensation in some self-dual Chern-Simons theories, Phys. Lett. B 265 (1991), no. 3-4, 361-365. MR 1124144 (92f:81092), https://doi.org/10.1016/0370-2693(91)90066-Y
  • [47] D. Olive and Neil Turok, The symmetries of Dynkin diagrams and the reduction of Toda field equations, Nuclear Phys. B 215 (1983), no. 4, 470-494. MR 699743 (84m:58060), https://doi.org/10.1016/0550-3213(83)90256-0
  • [48] Jeremy Schiff, Integrability of Chern-Simons-Higgs and abelian Higgs vortex equations in a background metric, J. Math. Phys. 32 (1991), no. 3, 753-761. MR 1093819 (92c:58052), https://doi.org/10.1063/1.529367
  • [49] Joel Spruck and Yi Song Yang, On multivortices in the electroweak theory. I. Existence of periodic solutions, Comm. Math. Phys. 144 (1992), no. 1, 1-16. MR 1151243 (93g:81203)
  • [50] G. 't Hooft, A property of electric and magnetic flux in non-Abelian gauge theories, Nuclear Phys. B 153 (1979), no. 1-2, 141-160. MR 535106 (80g:81043), https://doi.org/10.1016/0550-3213(79)90465-6
  • [51] Gabriella Tarantello, Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys. 37 (1996), no. 8, 3769-3796. MR 1400816 (97f:58045), https://doi.org/10.1063/1.531601
  • [52] Sheng Wang and Yi Song Yang, Abrikosov's vortices in the critical coupling, SIAM J. Math. Anal. 23 (1992), no. 5, 1125-1140. MR 1177781 (94d:35139), https://doi.org/10.1137/0523063
  • [53] Erick J. Weinberg and Piljin Yi, Magnetic monopole dynamics, supersymmetry, and duality, Phys. Rep. 438 (2007), no. 2-4, 65-236. MR 2347368 (2009d:81368), https://doi.org/10.1016/j.physrep.2006.11.002
  • [54] Frank Wilczek, Fractional statistics and anyon superconductivity, World Scientific Publishing Co., Inc., Teaneck, NJ, 1990. MR 1081990 (92c:81001)
  • [55] Yisong Yang, The relativistic non-abelian Chern-Simons equations, Comm. Math. Phys. 186 (1997), no. 1, 199-218. MR 1462762 (98h:58047), https://doi.org/10.1007/BF02885678
  • [56] Yisong Yang, Solitons in field theory and nonlinear analysis, Springer Monographs in Mathematics, Springer-Verlag, New York, 2001. MR 1838682 (2002m:58001)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35C08, 35J50, 35Q70

Retrieve articles in all journals with MSC (2010): 35C08, 35J50, 35Q70


Additional Information

Xiaosen Han
Affiliation: Institute of Contemporary Mathematics, School of Mathematics and Statistics, Henan University, Kaifeng, Henan 475000, People’s Republic of China
Email: hanxiaosen@henu.edu.cn

Yisong Yang
Affiliation: Institute of Contemporary Mathematics, Henan University, Kaifeng, Henan 475000, People’s Republic of China – and – Department of Mathematics, Polytechnic School of Engineering, New York University, Brooklyn, New York 11201 – and – NYU-ECNU Institute of Mathematical Sciences, New York University - Shanghai, 3663 North Zhongshan Road, Shanghai 200062, People’s Republic of China
Email: yisongyang@nyu.edu

DOI: https://doi.org/10.1090/tran/6746
Received by editor(s): April 23, 2014
Published electronically: August 20, 2015
Additional Notes: The first author was supported in part by the National Natural Science Foundation of China under grant 11201118 and by the Key Foundation for Henan Colleges under grant 15A110013. Both authors were supported in part by the National Natural Science Foundation of China under grants 11471100 and 11471099
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society