Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the Nullstellensätze for Stein spaces and $ C$-analytic sets


Authors: Francesca Acquistapace, Fabrizio Broglia and José F. Fernando
Journal: Trans. Amer. Math. Soc. 368 (2016), 3899-3929
MSC (2010): Primary 32C15, 32C25, 32C05, 32C07; Secondary 11E25, 26E05
DOI: https://doi.org/10.1090/tran/6436
Published electronically: August 20, 2015
MathSciNet review: 3453361
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this work we prove the real Nullstellensatz for the ring $ \EuScript {O}(X)$ of analytic functions on a $ C$-analytic set $ X\subset \mathbb{R}^n$ in terms of the saturation of Łojasiewicz's radical in $ \EuScript {O}(X)$: The ideal $ \mathcal {I}(\mathcal {Z}(\mathfrak{a}))$ of the zero-set $ \mathcal {Z}(\mathfrak{a})$ of an ideal $ \mathfrak{a}$ of $ \EuScript {O}(X)$ coincides with the saturation $ \widetilde {\sqrt [\mathit {L}]{\mathfrak{a}}}$ of Łojasiewicz's radical $ \sqrt [\mathit {L}]{\mathfrak{a}}$. If $ \mathcal {Z}(\mathfrak{a})$ has `good properties' concerning Hilbert's 17th Problem, then $ \mathcal {I}(\mathcal {Z}(\mathfrak{a}))=\widetilde {\sqrt [\mathsf {r}]{\mathfrak{a}}}$ where $ \sqrt [\mathsf {r}]{\mathfrak{a}}$ stands for the real radical of $ \mathfrak{a}$. The same holds if we replace $ \sqrt [\mathsf {r}]{\mathfrak{a}}$ with the real-analytic radical $ \sqrt [\mathsf {ra}]{\mathfrak{a}}$ of $ \mathfrak{a}$, which is a natural generalization of the real radical ideal in the $ C$-analytic setting. We revisit the classical results concerning (Hilbert's) Nullstellensatz in the framework of (complex) Stein spaces.

Let $ \mathfrak{a}$ be a saturated ideal of $ \EuScript {O}(\mathbb{R}^n)$ and $ Y_{\mathbb{R}^n}$ the germ of the support of the coherent sheaf that extends $ \mathfrak{a}\EuScript {O}_{\mathbb{R}^n}$ to a suitable complex open neighborhood of $ \mathbb{R}^n$. We study the relationship between a normal primary decomposition of $ \mathfrak{a}$ and the decomposition of $ Y_{\mathbb{R}^n}$ as the union of its irreducible components. If $ \mathfrak{a}:=\mathfrak{p}$ is prime, then $ \mathcal {I}(\mathcal {Z}(\mathfrak{p}))=\mathfrak{p}$ if and only if the (complex) dimension of $ Y_{\mathbb{R}^n}$ coincides with the (real) dimension of $ \mathcal {Z}(\mathfrak{p})$.


References [Enhancements On Off] (What's this?)

  • [ABF] Francesca Acquistapace, Fabrizio Broglia, and José F. Fernando, On Hilbert's 17th problem and Pfister's multiplicative formulae for the ring of real analytic functions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13 (2014), no. 2, 333-369. MR 3235518
  • [ABFR1] Francesca Acquistapace, Fabrizio Broglia, José F. Fernando, and Jesús M. Ruiz, On the Pythagoras numbers of real analytic surfaces, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 5, 751-772 (English, with English and French summaries). MR 2195258 (2007d:14104), https://doi.org/10.1016/j.ansens.2005.04.001
  • [ABFR2] Francesca Acquistapace, Fabrizio Broglia, José F. Fernando, and Jesús M. Ruiz, On the Pythagoras numbers of real analytic curves, Math. Z. 257 (2007), no. 1, 13-21. MR 2318567 (2008c:14075), https://doi.org/10.1007/s00209-007-0107-6
  • [ABFR3] Francesca Acquistapace, Fabrizio Broglia, José F. Fernando, and Jesús M. Ruiz, On the finiteness of Pythagoras numbers of real meromorphic functions, Bull. Soc. Math. France 138 (2010), no. 2, 231-247 (English, with English and French summaries). MR 2679039 (2011i:14094)
  • [ABN] Francesca Acquistapace, Fabrizio Broglia, and Andreea Nicoara, A Nullstellensatz for Łojasiewicz ideals, Rev. Mat. Iberoam. 30 (2014), no. 4, 1479-1487. MR 3293441, https://doi.org/10.4171/RMI/822
  • [ABS] F. Acquistapace, F. Broglia, and M. Shiota, The finiteness property and Łojasiewicz inequality for global semianalytic sets, Adv. Geom. 5 (2005), no. 3, 377-390. MR 2154832 (2007b:14126), https://doi.org/10.1515/advg.2005.5.3.377
  • [A] William A. Adkins, A real analytic Nullstellensatz for two dimensional manifolds, Boll. Un. Mat. Ital. B (5) 14 (1977), no. 3, 888-903 (English, with Italian summary). MR 0486603 (58 #6323)
  • [AL] William A. Adkins and J. V. Leahy, A global real analytic nullstellensatz, Duke Math. J. 43 (1976), no. 1, 81-86. MR 0396991 (53 #851)
  • [dB1] P. de Bartolomeis, Algebre di Stein nel caso reale, Rend. Accad. Naz. XL (5) 1/2 (1975/76), 105-144 (1977) (Italian, with English summary). MR 0499305 (58 #17204)
  • [dB2] Paolo de Bartolomeis, Una nota sulla topologia delle algebre reali coerenti, Boll. Un. Mat. Ital. (5) 13A (1976), no. 1, 123-125 (Italian, with English summary). MR 0425153 (54 #13110)
  • [BM] Edward Bierstone and Pierre D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 5-42. MR 972342 (89k:32011)
  • [BCR] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy, Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36, Springer-Verlag, Berlin, 1998. Translated from the 1987 French original; Revised by the authors. MR 1659509 (2000a:14067)
  • [BKS] Jacek Bochnak, Wojciech Kucharz, and Masahiro Shiota, On equivalence of ideals of real global analytic functions and the 17th Hilbert problem, Invent. Math. 63 (1981), no. 3, 403-421. MR 620677 (82i:32020), https://doi.org/10.1007/BF01389062
  • [BP] Fabrizio Broglia and Federica Pieroni, The Nullstellensatz for real coherent analytic surfaces, Rev. Mat. Iberoam. 25 (2009), no. 2, 781-798. MR 2569554 (2011b:14127), https://doi.org/10.4171/RMI/583
  • [C1] Henri Cartan, Idéaux et modules de fonctions analytiques de variables complexes, Bull. Soc. Math. France 78 (1950), 29-64 (French). MR 0036848 (12,172f)
  • [C2] Henri Cartan, Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France 85 (1957), 77-99 (French). MR 0094830 (20 #1339)
  • [Ca] Bryan E. Cain, A two-color theorem for analytic maps in $ {\bf R}^{n}$, Proc. Amer. Math. Soc. 39 (1973), 261-266. MR 0317981 (47 #6530)
  • [D] John P. D'Angelo, Real and complex geometry meet the Cauchy-Riemann equations, Analytic and algebraic geometry, IAS/Park City Math. Ser., vol. 17, Amer. Math. Soc., Providence, RI, 2010, pp. 77-182. MR 2743816 (2012i:32047)
  • [DM] Charles N. Delzell and James J. Madden, Lattice-ordered rings and semialgebraic geometry. I, Real analytic and algebraic geometry (Trento, 1992) de Gruyter, Berlin, 1995, pp. 103-129. MR 1320313 (96a:14061)
  • [De] Jean-Pierre Demailly, Construction d'hypersurfaces irréductibles avec lieu singulier donné dans $ {\bf C}^{n}$, Ann. Inst. Fourier (Grenoble) 30 (1980), no. 3, 219-236 (French). MR 597024 (82f:32007)
  • [Fe] José F. Fernando, On Hilbert's 17th problem for global analytic functions in dimension 3, Comment. Math. Helv. 83 (2008), no. 1, 67-100. MR 2365409 (2009c:32010), https://doi.org/10.4171/CMH/119
  • [FG] José F. Fernando and José M. Gamboa, Real Algebra from Hilbert's 17th Problem, Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Matematica, Edizioni ETS, Pisa (2012).
  • [F] Otto Forster, Primärzerlegung in Steinschen Algebren, Math. Ann. 154 (1964), 307-329 (German). MR 0165387 (29 #2671)
  • [GT] M. Galbiati and A. Tognoli, Alcune proprietà delle varietà algebriche reali, Ann. Scuola Norm. Sup. Pisa (3) 27 (1973), 359-404 (1974) (Italian). MR 0364238 (51 #493)
  • [GR] Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696 (31 #4927)
  • [H] Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, vol. 33, Springer-Verlag, New York, 1994. Corrected reprint of the 1976 original. MR 1336822 (96c:57001)
  • [Jw] P. Jaworski, Extensions of orderings on fields of quotients of rings of real analytic functions, Math. Nachr. 125 (1986), 329-339. MR 847371 (87m:32018)
  • [K] J. J. Kohn, Subellipticity of the $ \bar \partial $-Neumann problem on pseudo-convex domains: sufficient conditions, Acta Math. 142 (1979), no. 1-2, 79-122. MR 512213 (80d:32020), https://doi.org/10.1007/BF02395058
  • [M] B. Malgrange, Ideals of differentiable functions, Tata Institute of Fundamental Research Studies in Mathematics, No. 3, Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, 1967. MR 0212575 (35 #3446)
  • [N] Raghavan Narasimhan, Introduction to the theory of analytic spaces, Lecture Notes in Mathematics, No. 25, Springer-Verlag, Berlin-New York, 1966. MR 0217337 (36 #428)
  • [No] K. J. Nowak, On the real algebra of quasianalytic function germs. RAAG Preprint, IMUJ Preprint 2010/08, 317 (2010); http://www2.im.uj.edu.pl/badania/preprinty/
    imuj2010/pr1008.pdf, http://www.maths.manchester.ac.uk/raag/preprints/
    0317.pdf
  • [Rz] Jesús M. Ruiz, On Hilbert's 17th problem and real Nullstellensatz for global analytic functions, Math. Z. 190 (1985), no. 3, 447-454. MR 806902 (87b:32010), https://doi.org/10.1007/BF01215144
  • [S] Yum-tong Siu, Hilbert Nullstellensatz in global complex-analytic case, Proc. Amer. Math. Soc. 19 (1968), 296-298. MR 0222339 (36 #5391)
  • [To] Alberto Tognoli, Proprietà globali degli spazi analitici reali, Ann. Mat. Pura Appl. (4) 75 (1967), 143-218 (Italian). MR 0236418 (38 #4714)
  • [WB] H. Whitney and F. Bruhat, Quelques propriétés fondamentales des ensembles analytiques-réels, Comment. Math. Helv. 33 (1959), 132-160 (French). MR 0102094 (21 #889)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 32C15, 32C25, 32C05, 32C07, 11E25, 26E05

Retrieve articles in all journals with MSC (2010): 32C15, 32C25, 32C05, 32C07, 11E25, 26E05


Additional Information

Francesca Acquistapace
Affiliation: Dipartimento di Matematica, Università degli Studi di Pisa, Largo Bruno Pontecorvo, 5, 56127 Pisa, Italy
Email: acquistf@dm.unipi.it

Fabrizio Broglia
Affiliation: Dipartimento di Matematica, Università degli Studi di Pisa, Largo Bruno Pontecorvo, 5, 56127 Pisa, Italy
Email: broglia@dm.unipi.it

José F. Fernando
Affiliation: Departamento de Álgebra, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, 28040 Madrid, Spain
Email: josefer@mat.ucm.es

DOI: https://doi.org/10.1090/tran/6436
Keywords: Nullstellensatz, Stein space, closed ideal, radical, real Nullstellensatz, $C$-analytic set, saturated ideal, {\L}ojasiewicz's radical, convex ideal, $H$-sets, $H^{\mathsf a}$-set, real ideal, real radical, real-analytic ideal, real-analytic radical, quasi-real ideal
Received by editor(s): January 27, 2014
Received by editor(s) in revised form: March 24, 2014
Published electronically: August 20, 2015
Additional Notes: The authors were supported by Spanish GAAR MTM2011-22435. The first and second authors were also supported by Italian GNSAGA of INdAM and MIUR. This article is the fruit of the close collaboration of the authors in the last ten years and has been performed in the course of several research stays of the first two authors in the Department of Algebra at the Universidad Complutense de Madrid and of the third author in the Department of Mathematics at the Università di Pisa.
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society