Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Berezin transforms on noncommutative polydomains


Author: Gelu Popescu
Journal: Trans. Amer. Math. Soc. 368 (2016), 4357-4416
MSC (2010): Primary 46L52, 47A56; Secondary 47A48, 47A60
DOI: https://doi.org/10.1090/tran/6466
Published electronically: September 15, 2015
MathSciNet review: 3453374
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is an attempt to unify the multivariable operator model theory for ball-like domains and commutative polydiscs and extend it to a more general class of noncommutative polydomains $ {\bf D_q^m}(\mathcal {H})$ in $ B(\mathcal {H})^n$. An important role in our study is played by noncommutative Berezin transforms associated with the elements of the polydomain. These transforms are used to prove that each such polydomain has a universal model $ {\bf W}=\{{\bf W}_{i,j}\}$ consisting of weighted shifts acting on a tensor product of full Fock spaces. We introduce the noncommutative Hardy algebra $ F^\infty ({\bf D_q^m})$ as the weakly closed algebra generated by $ \{{\bf W}_{i,j}\}$ and the identity, and use it to provide a WOT-continuous functional calculus for completely non-coisometric tuples in $ {\bf D_q^m}(\mathcal {H})$. It is shown that the Berezin transform is a completely isometric isomorphism between $ F^\infty ({\bf D_q^m})$ and the algebra of bounded free holomorphic functions on the radial part of $ {\bf D_q^m}(\mathcal {H})$. A characterization of the Beurling type joint invariant subspaces under $ \{{\bf W}_{i,j}\}$ is also provided.

It has been an open problem for quite some time to find significant classes of elements in the commutative polydisc for which a theory of characteristic functions and model theory can be developed along the lines of the Sz.-Nagy-Foias theory of contractions. We give a positive answer to this question, in our more general setting, providing a characterization for the class of tuples of operators in $ {\bf D_q^m}(\mathcal {H})$ which admit characteristic functions. The characteristic function is constructed explicitly as an artifact of the noncommutative Berezin kernel associated with the polydomain, and it is proved to be a complete unitary invariant for the class of completely non-coisometric tuples. Using noncommutative Berezin transforms and $ C^*$-algebra techniques, we develop a dilation theory on the noncommutative polydomain $ {\bf D_q^m}(\mathcal {H})$.


References [Enhancements On Off] (What's this?)

  • [1] Jim Agler, The Arveson extension theorem and coanalytic models, Integral Equations Operator Theory 5 (1982), no. 5, 608-631. MR 697007 (84g:47011), https://doi.org/10.1007/BF01694057
  • [2] Jim Agler, Hypercontractions and subnormality, J. Operator Theory 13 (1985), no. 2, 203-217. MR 775993 (86i:47028)
  • [3] William B. Arveson, Subalgebras of $ C^{\ast } $-algebras, Acta Math. 123 (1969), 141-224. MR 0253059 (40 #6274)
  • [4] William Arveson, An invitation to $ C^*$-algebras, Graduate Texts in Mathematics, No. 39, Springer-Verlag, New York-Heidelberg, 1976. MR 0512360 (58 #23621)
  • [5] William Arveson, Subalgebras of $ C^*$-algebras. III. Multivariable operator theory, Acta Math. 181 (1998), no. 2, 159-228. MR 1668582 (2000e:47013), https://doi.org/10.1007/BF02392585
  • [6] William Arveson, The curvature invariant of a Hilbert module over $ {\bf C}[z_1,\cdots ,z_d]$, J. Reine Angew. Math. 522 (2000), 173-236. MR 1758582 (2003a:47013), https://doi.org/10.1515/crll.2000.037
  • [7] Ameer Athavale, Holomorphic kernels and commuting operators, Trans. Amer. Math. Soc. 304 (1987), no. 1, 101-110. MR 906808 (88m:47039), https://doi.org/10.2307/2000706
  • [8] Joseph A. Ball and Victor Vinnikov, Lax-Phillips scattering and conservative linear systems: a Cuntz-algebra multidimensional setting, Mem. Amer. Math. Soc. 178 (2005), no. 837, iv+101. MR 2172325 (2006j:47015), https://doi.org/10.1090/memo/0837
  • [9] T. Bhattacharyya, J. Eschmeier, and J. Sarkar, Characteristic function of a pure commuting contractive tuple, Integral Equations Operator Theory 53 (2005), no. 1, 23-32. MR 2183594 (2006m:47012), https://doi.org/10.1007/s00020-004-1309-5
  • [10] T. Bhattacharyya and J. Sarkar, Characteristic function for polynomially contractive commuting tuples, J. Math. Anal. Appl. 321 (2006), no. 1, 242-259. MR 2236555 (2007d:47013), https://doi.org/10.1016/j.jmaa.2005.07.075
  • [11] Chafiq Benhida and Dan Timotin, Automorphism invariance properties for certain families of multioperators, Operator theory live, Theta Ser. Adv. Math., vol. 12, Theta, Bucharest, 2010, pp. 5-15. MR 2731860 (2012a:47022)
  • [12] Arne Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1948), 17. MR 0027954 (10,381e)
  • [13] F. A. Berezin, Covariant and contravariant symbols of operators, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 1134-1167 (Russian). MR 0350504 (50 #2996)
  • [14] John W. Bunce, Models for $ n$-tuples of noncommuting operators, J. Funct. Anal. 57 (1984), no. 1, 21-30. MR 744917 (85k:47019), https://doi.org/10.1016/0022-1236(84)90098-3
  • [15] S. Brehmer, Über vetauschbare Kontraktionen des Hilbertschen Raumes, Acta Sci. Math. Szeged 22 (1961), 106-111 (German). MR 0131169 (24 #A1023a)
  • [16] R. E. Curto and F.-H. Vasilescu, Automorphism invariance of the operator-valued Poisson transform, Acta Sci. Math. (Szeged) 57 (1993), no. 1-4, 65-78. MR 1243269 (94i:47013)
  • [17] R. E. Curto and F.-H. Vasilescu, Standard operator models in the polydisc, Indiana Univ. Math. J. 42 (1993), no. 3, 791-810. MR 1254118 (94k:47008), https://doi.org/10.1512/iumj.1993.42.42035
  • [18] R. E. Curto and F. H. Vasilescu, Standard operator models in the polydisc. II, Indiana Univ. Math. J. 44 (1995), no. 3, 727-746. MR 1375346 (96k:47009), https://doi.org/10.1512/iumj.1995.44.2005
  • [19] Kenneth R. Davidson and David R. Pitts, The algebraic structure of non-commutative analytic Toeplitz algebras, Math. Ann. 311 (1998), no. 2, 275-303. MR 1625750 (2001c:47082), https://doi.org/10.1007/s002080050188
  • [20] Kenneth R. Davidson, David W. Kribs, and Miron E. Shpigel, Isometric dilations of non-commuting finite rank $ n$-tuples, Canad. J. Math. 53 (2001), no. 3, 506-545. MR 1827819 (2002f:47010), https://doi.org/10.4153/CJM-2001-022-0
  • [21] S. W. Drury, A generalization of von Neumann's inequality to the complex ball, Proc. Amer. Math. Soc. 68 (1978), no. 3, 300-304. MR 480362 (80c:47010), https://doi.org/10.2307/2043109
  • [22] Arthur E. Frazho, Models for noncommuting operators, J. Funct. Anal. 48 (1982), no. 1, 1-11. MR 671311 (84h:47010), https://doi.org/10.1016/0022-1236(82)90057-X
  • [23] Steven G. Krantz, Function theory of several complex variables, AMS Chelsea Publishing, Providence, RI, 2001. Reprint of the 1992 edition. MR 1846625 (2002e:32001)
  • [24] Vladimír Müller, Models for operators using weighted shifts, J. Operator Theory 20 (1988), no. 1, 3-20. MR 972177 (90a:47027)
  • [25] V. Müller and F.-H. Vasilescu, Standard models for some commuting multioperators, Proc. Amer. Math. Soc. 117 (1993), no. 4, 979-989. MR 1112498 (93e:47016), https://doi.org/10.2307/2159525
  • [26] Paul S. Muhly and Baruch Solel, Tensor algebras over $ C^*$-correspondences: representations, dilations, and $ C^*$-envelopes, J. Funct. Anal. 158 (1998), no. 2, 389-457. MR 1648483 (99j:46066), https://doi.org/10.1006/jfan.1998.3294
  • [27] Paul S. Muhly and Baruch Solel, Hardy algebras, $ W^\ast $-correspondences and interpolation theory, Math. Ann. 330 (2004), no. 2, 353-415. MR 2089431 (2006a:46073), https://doi.org/10.1007/s00208-004-0554-x
  • [28] Paul S. Muhly and Baruch Solel, Canonical models for representations of Hardy algebras, Integral Equations Operator Theory 53 (2005), no. 3, 411-452. MR 2186099 (2006j:47126), https://doi.org/10.1007/s00020-005-1373-5
  • [29] Anders Olofsson, A characteristic operator function for the class of $ n$-hypercontractions, J. Funct. Anal. 236 (2006), no. 2, 517-545. MR 2240173 (2007e:47018), https://doi.org/10.1016/j.jfa.2006.03.004
  • [30] Anders Olofsson, An operator-valued Berezin transform and the class of $ n$-hypercontractions, Integral Equations Operator Theory 58 (2007), no. 4, 503-549. MR 2329133 (2008h:47023), https://doi.org/10.1007/s00020-007-1502-4
  • [31] Vern I. Paulsen, Completely bounded maps and dilations, Pitman Research Notes in Mathematics Series, vol. 146, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1986. MR 868472 (88h:46111)
  • [32] Gilles Pisier, Similarity problems and completely bounded maps, second, expanded edition, includes the solution to ``The Halmos problem'', Lecture Notes in Mathematics, vol. 1618, Springer-Verlag, Berlin, 2001. MR 1818047 (2001m:47002)
  • [33] Gelu Popescu, Isometric dilations for infinite sequences of noncommuting operators, Trans. Amer. Math. Soc. 316 (1989), no. 2, 523-536. MR 972704 (90c:47006), https://doi.org/10.2307/2001359
  • [34] Gelu Popescu, Characteristic functions for infinite sequences of noncommuting operators, J. Operator Theory 22 (1989), no. 1, 51-71. MR 1026074 (91m:47012)
  • [35] Gelu Popescu, von Neumann inequality for $ (B({\mathcal {H}})^n)_1$, Math. Scand. 68 (1991), no. 2, 292-304. MR 1129595 (92k:47073)
  • [36] Gelu Popescu, Functional calculus for noncommuting operators, Michigan Math. J. 42 (1995), no. 2, 345-356. MR 1342494 (96k:47025), https://doi.org/10.1307/mmj/1029005232
  • [37] Gelu Popescu, Multi-analytic operators on Fock spaces, Math. Ann. 303 (1995), no. 1, 31-46. MR 1348353 (96k:47049), https://doi.org/10.1007/BF01460977
  • [38] Gelu Popescu, Poisson transforms on some $ C^*$-algebras generated by isometries, J. Funct. Anal. 161 (1999), no. 1, 27-61. MR 1670202 (2000m:46117), https://doi.org/10.1006/jfan.1998.3346
  • [39] Gelu Popescu, Curvature invariant for Hilbert modules over free semigroup algebras, Adv. Math. 158 (2001), no. 2, 264-309. MR 1822685 (2002b:46097), https://doi.org/10.1006/aima.2000.1972
  • [40] Gelu Popescu, Free holomorphic functions on the unit ball of $ B(\mathcal {H})^n$, J. Funct. Anal. 241 (2006), no. 1, 268-333. MR 2264252 (2007h:47015), https://doi.org/10.1016/j.jfa.2006.07.004
  • [41] Gelu Popescu, Operator theory on noncommutative varieties, Indiana Univ. Math. J. 55 (2006), no. 2, 389-442. MR 2225440 (2007m:47008), https://doi.org/10.1512/iumj.2006.55.2771
  • [42] Gelu Popescu, Noncommutative Berezin transforms and multivariable operator model theory, J. Funct. Anal. 254 (2008), no. 4, 1003-1057. MR 2381202 (2009j:47015), https://doi.org/10.1016/j.jfa.2007.06.004
  • [43] Gelu Popescu, Unitary invariants in multivariable operator theory, Mem. Amer. Math. Soc. 200 (2009), no. 941, vi+91. MR 2519137 (2010d:47005), https://doi.org/10.1090/memo/0941
  • [44] Gelu Popescu, Noncommutative transforms and free pluriharmonic functions, Adv. Math. 220 (2009), no. 3, 831-893. MR 2483229 (2010f:47016), https://doi.org/10.1016/j.aim.2008.09.019
  • [45] Gelu Popescu, Free holomorphic functions on the unit ball of $ B(\mathcal {H})^n$. II, J. Funct. Anal. 258 (2010), no. 5, 1513-1578. MR 2566311 (2011b:47020), https://doi.org/10.1016/j.jfa.2009.10.014
  • [46] Gelu Popescu, Operator theory on noncommutative domains, Mem. Amer. Math. Soc. 205 (2010), no. 964, vi+124. MR 2643314 (2011g:47018), https://doi.org/10.1090/S0065-9266-09-00587-0
  • [47] Gelu Popescu, Free holomorphic automorphisms of the unit ball of $ B(\mathcal {H})^n$, J. Reine Angew. Math. 638 (2010), 119-168. MR 2595338 (2012c:46161), https://doi.org/10.1515/CRELLE.2010.005
  • [48] Gelu Popescu, Joint similarity to operators in noncommutative varieties, Proc. Lond. Math. Soc. (3) 103 (2011), no. 2, 331-370. MR 2821245 (2012h:46095), https://doi.org/10.1112/plms/pdr005
  • [49] Gelu Popescu, Free biholomorphic classification of noncommutative domains, Int. Math. Res. Not. IMRN 4 (2011), 784-850. MR 2773331 (2012d:47213), https://doi.org/10.1093/imrn/rnq093
  • [50] Gelu Popescu, Berezin transforms on noncommutative varieties in polydomains, J. Funct. Anal. 265 (2013), no. 10, 2500-2552. MR 3091823, https://doi.org/10.1016/j.jfa.2013.07.015
  • [51] Sandra Pott, Standard models under polynomial positivity conditions, J. Operator Theory 41 (1999), no. 2, 365-389. MR 1681579 (2000j:47019)
  • [52] Walter Rudin, Function theory in polydiscs, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0255841 (41 #501)
  • [53] W. Forrest Stinespring, Positive functions on $ C^*$-algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216. MR 0069403 (16,1033b)
  • [54] Béla Sz.-Nagy, Ciprian Foias, Hari Bercovici, and László Kérchy, Harmonic analysis of operators on Hilbert space, revised and enlarged edition, Universitext, Springer, New York, 2010. MR 2760647 (2012b:47001)
  • [55] Dan Timotin, Regular dilations and models for multicontractions, Indiana Univ. Math. J. 47 (1998), no. 2, 671-684. MR 1647873 (2000c:47019), https://doi.org/10.1512/iumj.1998.47.1372
  • [56] Florian-Horia Vasilescu, An operator-valued Poisson kernel, J. Funct. Anal. 110 (1992), no. 1, 47-72. MR 1190419 (94d:47033), https://doi.org/10.1016/0022-1236(92)90042-H
  • [57] Johann von Neumann, Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr. 4 (1951), 258-281 (German). MR 0043386 (13,254a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 46L52, 47A56, 47A48, 47A60

Retrieve articles in all journals with MSC (2010): 46L52, 47A56, 47A48, 47A60


Additional Information

Gelu Popescu
Affiliation: Department of Mathematics, The University of Texas at San Antonio, San Antonio, Texas 78249
Email: gelu.popescu@utsa.edu

DOI: https://doi.org/10.1090/tran/6466
Keywords: Multivariable operator theory, Berezin transform, noncommutative polydomain, free holomorphic function, characteristic function, Fock space, weighted shift, invariant subspace, functional calculus, dilation theory
Received by editor(s): November 6, 2013
Received by editor(s) in revised form: April 29, 2014
Published electronically: September 15, 2015
Additional Notes: This research was supported in part by an NSF grant
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society