Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Diophantine approximations and directional discrepancy of rotated lattices


Authors: Dmitriy Bilyk, Xiaomin Ma, Jill Pipher and Craig Spencer
Journal: Trans. Amer. Math. Soc. 368 (2016), 3871-3897
MSC (2010): Primary 11K38, 11K60, 28A78, 52C05
DOI: https://doi.org/10.1090/tran/6492
Published electronically: September 9, 2015
MathSciNet review: 3453360
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the following question related to Diophantine approximations and geometric measure theory: for a given set $ \Omega $ find $ \alpha $ such that $ \alpha - \theta $ has bad Diophantine properties simultaneously for all $ \theta \in \Omega $. How do the arising Diophantine inequalities depend on the geometry of the set $ \Omega $? We provide several methods which yield different answers in terms of the metric entropy of $ \Omega $ and consider various examples.

Furthermore, we apply these results to explore the asymptotic behavior of the directional discrepancy, i.e., the discrepancy with respect to rectangles rotated in certain sets of directions. It is well known that the extremal cases of this problem (fixed direction vs. all possible rotations) yield completely different bounds. We use rotated lattices to obtain directional discrepancy estimates for general rotation sets and investigate the sharpness of these methods.


References [Enhancements On Off] (What's this?)

  • [1] C. Aistleitner, I. Berkes, and R. Tichy, On the asymptotic behavior of weakly lacunary series, Proc. Amer. Math. Soc. 139 (2011), no. 7, 2505-2517. MR 2784816 (2012c:42021), https://doi.org/10.1090/S0002-9939-2011-10682-8
  • [2] Michael Bateman, Kakeya sets and directional maximal operators in the plane, Duke Math. J. 147 (2009), no. 1, 55-77. MR 2494456 (2009m:42029), https://doi.org/10.1215/00127094-2009-006
  • [3] József Beck, Irregularities of distribution. I, Acta Math. 159 (1987), no. 1-2, 1-49. MR 906524 (89c:11117), https://doi.org/10.1007/BF02392553
  • [4] József Beck, On the discrepancy of convex plane sets, Monatsh. Math. 105 (1988), no. 2, 91-106. MR 930428 (89f:11109), https://doi.org/10.1007/BF01501162
  • [5] J. Beck and W. W. L. Chen, Irregularities of point distribution relative to convex polygons. III, J. London Math. Soc. (2) 56 (1997), no. 2, 222-230. MR 1489133 (99a:11093), https://doi.org/10.1112/S0024610797005267
  • [6] Dmitriy Bilyk, Xiaomin Ma, Jill Pipher, and Craig Spencer, Directional discrepancy in two dimensions, Bull. Lond. Math. Soc. 43 (2011), no. 6, 1151-1166. MR 2861537, https://doi.org/10.1112/blms/bdr050
  • [7] Yann Bugeaud and Nikolay Moshchevitin, Badly approximable numbers and Littlewood-type problems, Math. Proc. Cambridge Philos. Soc. 150 (2011), no. 2, 215-226. MR 2770060 (2012a:11093), https://doi.org/10.1017/S0305004110000605
  • [8] J. W. S. Cassels, On a result of Marshall Hall, Mathematika 3 (1956), 109-110. MR 0084526 (18,875d)
  • [9] W. W. L. Chen and G. Travaglini, Discrepancy with respect to convex polygons, J. Complexity 23 (2007), no. 4-6, 662-672. MR 2372021 (2008m:11151), https://doi.org/10.1016/j.jco.2007.03.006
  • [10] H. Davenport, A note on Diophantine approximation. II, Mathematika 11 (1964), 50-58. MR 0166154 (29 #3432)
  • [11] Michael Drmota and Robert F. Tichy, Sequences, discrepancies and applications, Lecture Notes in Mathematics, vol. 1651, Springer-Verlag, Berlin, 1997. MR 1470456 (98j:11057)
  • [12] P. Erdős, Problems and results on Diophantine approximations. II, Répartition modulo 1 (Actes Colloq., Marseille-Luminy, 1974) Lecture Notes in Math., Vol. 475, Springer, Berlin, 1975, pp. 89-99. MR 0412138 (54 #265)
  • [13] Paul Hagelstein, Maximal operators associated to sets of directions of Hausdorff and Minkowski dimension zero, Recent advances in harmonic analysis and applications, Springer Proc. Math. Stat., vol. 25, Springer, New York, 2013, pp. 131-138. MR 3066883, https://doi.org/10.1007/978-1-4614-4565-4_13
  • [14] Marshall Hall Jr., On the sum and product of continued fractions, Ann. of Math. (2) 48 (1947), 966-993. MR 0022568 (9,226b)
  • [15] Y. Katznelson, Chromatic numbers of Cayley graphs on $ \mathbb{Z}$ and recurrence, Combinatorica 21 (2001), no. 2, 211-219. Paul Erdős and his mathematics (Budapest, 1999). MR 1832446 (2002h:05065), https://doi.org/10.1007/s004930100019
  • [16] A. Khintchine, Über eine Klase linearer Diophantischer Approximationen, Rend. Circ. Mat. Palermo 50 (1926), 170-195.
  • [17] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics. MR 0419394 (54 #7415)
  • [18] M. Lerch, Question 1547, L'Intermediaire Math. 11 (1904), 144-145.
  • [19] B. de Mathan, Numbers contravening a condition in density modulo $ 1$, Acta Math. Acad. Sci. Hungar. 36 (1980), no. 3-4, 237-241 (1981). MR 612195 (82e:10088), https://doi.org/10.1007/BF01898138
  • [20] N. G. Moshchevitin, On the distribution modulo 1 of lacunary and sublacunary sequences: application of the Peres-Schlag construction, Fundam. Prikl. Mat. 16 (2010), no. 5, 117-138 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N. Y.) 180 (2012), no. 5, 610-625. MR 2804897 (2012e:11123), https://doi.org/10.1007/s10958-012-0660-3
  • [21] Yuval Peres and Wilhelm Schlag, Two Erdős problems on lacunary sequences: chromatic number and Diophantine approximation, Bull. Lond. Math. Soc. 42 (2010), no. 2, 295-300. MR 2601556 (2011e:11126), https://doi.org/10.1112/blms/bdp126
  • [22] A. D. Pollington, On the density of sequence $ \{n_{k}\xi \}$, Illinois J. Math. 23 (1979), no. 4, 511-515. MR 540398 (80i:10066)
  • [23] I. P. Rochev, On the distribution of fractional parts of linear forms, Fundam. Prikl. Mat. 16 (2010), no. 6, 123-137 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N. Y.) 182 (2012), no. 4, 527-538. MR 2825521, https://doi.org/10.1007/s10958-012-0756-9
  • [24] K. F. Roth, On irregularities of distribution, Mathematika 1 (1954), 73-79. MR 0066435 (16,575c)
  • [25] Wolfgang M. Schmidt, Irregularities of distribution. VII, Acta Arith. 21 (1972), 45-50. MR 0319933 (47 #8474)
  • [26] P. Sjögren and P. Sjölin, Littlewood-Paley decompositions and Fourier multipliers with singularities on certain sets, Ann. Inst. Fourier (Grenoble) 31 (1981), no. 1, vii, 157-175 (English, with French summary). MR 613033 (82g:42014)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11K38, 11K60, 28A78, 52C05

Retrieve articles in all journals with MSC (2010): 11K38, 11K60, 28A78, 52C05


Additional Information

Dmitriy Bilyk
Affiliation: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
Email: dbilyk@math.umn.edu

Xiaomin Ma
Affiliation: Department of Mathematics, Brown University, Providence, Rhode Island 02912
Email: xiaomin@math.brown.edu

Jill Pipher
Affiliation: Department of Mathematics, Brown University, Providence, Rhode Island 02912
Email: jpipher@math.brown.edu

Craig Spencer
Affiliation: Department of Mathematics, Kansas State University, Manhattan, Kansas 66506
Email: cvs@math.ksu.edu

DOI: https://doi.org/10.1090/tran/6492
Received by editor(s): February 27, 2013
Received by editor(s) in revised form: March 24, 2014
Published electronically: September 9, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society