Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

The complex Lorentzian Leech lattice and the bimonster (II)


Author: Tathagata Basak
Journal: Trans. Amer. Math. Soc. 368 (2016), 4171-4195
MSC (2010): Primary 11H56, 20F05, 20F55; Secondary 20D08, 20F36, 51M10
DOI: https://doi.org/10.1090/tran/6558
Published electronically: October 5, 2015
MathSciNet review: 3453368
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ D$ be the incidence graph of the projective plane over $ \mathbb{F}_3$. The Artin group of the graph $ D$ maps onto the bimonster and a complex hyperbolic reflection group $ \Gamma $ acting on $ 13$ dimensional complex hyperbolic space $ Y$. The generators of the Artin group are mapped to elements of order $ 2$ (resp. $ 3$) in the bimonster (resp. $ \Gamma $). Let $ Y^{\circ } \subseteq Y$ be the complement of the union of the mirrors of $ \Gamma $. Daniel Allcock has conjectured that the orbifold fundamental group of $ Y^{\circ }/\Gamma $ surjects onto the bimonster.

In this article we study the reflection group $ \Gamma $. Our main result shows that there is homomorphism from the Artin group of $ D$ to the orbifold fundamental group of $ Y^{\circ }/\Gamma $, obtained by sending the Artin generators to the generators of monodromy around the mirrors of the generating reflections in $ \Gamma $. This answers a question in Allcock's article ``A monstrous proposal'' and takes a step towards the proof of Allcock's conjecture. The finite group $ \operatorname {PGL}(3, \mathbb{F}_3) \subseteq \mathrm {Aut}(D)$ acts on $ Y$ and fixes a complex hyperbolic line pointwise. We show that the restriction of $ \Gamma $-invariant meromorphic automorphic forms on $ Y$ to the complex hyperbolic line fixed by $ \operatorname {PGL}(3, \mathbb{F}_3)$ gives meromorphic modular forms of level $ 13$.


References [Enhancements On Off] (What's this?)

  • [1] Daniel Allcock, The Leech lattice and complex hyperbolic reflections, Invent. Math. 140 (2000), no. 2, 283-301. MR 1756997 (2002b:11091), https://doi.org/10.1007/s002220050363
  • [2] Daniel Allcock, A monstrous proposal, Groups and symmetries, CRM Proc. Lecture Notes, vol. 47, Amer. Math. Soc., Providence, RI, 2009, pp. 17-24. MR 2500552 (2010k:20022)
  • [3] Daniel Allcock, On the $ Y_{555}$ complex reflection group, J. Algebra 322 (2009), no. 5, 1454-1465. MR 2543618 (2010g:20068), https://doi.org/10.1016/j.jalgebra.2009.05.027
  • [4] D. Allcock and T. Basak, Geometric generators for braid-like groups, arXiv:1403:2401, (2014), to appear in Geometry and Topology.
  • [5] Tathagata Basak, The complex Lorentzian Leech lattice and the Bimonster, J. Algebra 309 (2007), no. 1, 32-56. MR 2301231 (2008f:20140), https://doi.org/10.1016/j.jalgebra.2006.05.033
  • [6] Tathagata Basak, Modular lattices from finite projective planes, J. Théor. Nombres Bordeaux 26 (2014), no. 2, 269-279 (English, with English and French summaries). MR 3320480
  • [7] Richard E. Borcherds, Automorphic forms with singularities on Grassmannians, Invent. Math. 132 (1998), no. 3, 491-562. MR 1625724 (99c:11049), https://doi.org/10.1007/s002220050232
  • [8] Egbert Brieskorn and Kyoji Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972), 245-271 (German). MR 0323910 (48 #2263)
  • [9] John H. Conway, Simon P. Norton, and Leonard H. Soicher, The Bimonster, the group $ Y_{555}$, and the projective plane of order $ 3$, Computers in algebra (Chicago, IL, 1985) Lecture Notes in Pure and Appl. Math., vol. 111, Dekker, New York, 1988, pp. 27-50. MR 1060755 (92f:20018)
  • [10] John H. Conway and A. D. Pritchard, Hyperbolic reflections for the Bimonster and $ 3{\rm Fi}_{24}$, Groups, combinatorics & geometry (Durham, 1990) London Math. Soc. Lecture Note Ser., vol. 165, Cambridge Univ. Press, Cambridge, 1992, pp. 24-45. MR 1200248 (94a:20033), https://doi.org/10.1017/CBO9780511629259.006
  • [11] John H. Conway and Christopher S. Simons, 26 implies the Bimonster, J. Algebra 235 (2001), no. 2, 805-814. MR 1805481 (2001k:20028), https://doi.org/10.1006/jabr.2000.8494
  • [12] John H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd ed., with additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1999. MR 1662447 (2000b:11077)
  • [13] Pierre Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273-302 (French). MR 0422673 (54 #10659)
  • [14] William M. Goldman, Complex hyperbolic geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1999. MR 1695450 (2000g:32029)
  • [15] G. Heckman, The Allcock ball quotient, arXiv:1307.1339, (2013).
  • [16] G. Heckman and S. Reiken, Two Lorentzian lattices, arXiv:1412.2922, (2014).
  • [17] A. A. Ivanov, A geometric characterization of the Monster, Groups, combinatorics & geometry (Durham, 1990) London Math. Soc. Lecture Note Ser., vol. 165, Cambridge Univ. Press, Cambridge, 1992, pp. 46-62. MR 1200249 (94c:20033), https://doi.org/10.1017/CBO9780511629259.007
  • [18] A. A. Ivanov, $ Y$-groups via transitive extension, J. Algebra 218 (1999), no. 2, 412-435. MR 1705810 (2000i:20029), https://doi.org/10.1006/jabr.1999.7882
  • [19] Martin Liebeck and Jan Saxl (eds.), Groups, combinatorics & geometry, London Mathematical Society Lecture Note Series, vol. 165, Cambridge University Press, Cambridge, 1992. MR 1200244 (93g:20001)
  • [20] Eduard Looijenga, Compactifications defined by arrangements. I. The ball quotient case, Duke Math. J. 118 (2003), no. 1, 151-187. MR 1978885 (2004i:14042a), https://doi.org/10.1215/S0012-7094-03-11816-5
  • [21] Simon P. Norton, Constructing the Monster, Groups, combinatorics & geometry (Durham, 1990) London Math. Soc. Lecture Note Ser., vol. 165, Cambridge Univ. Press, Cambridge, 1992, pp. 63-76. MR 1200250 (94c:20034), https://doi.org/10.1017/CBO9780511629259.008

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11H56, 20F05, 20F55, 20D08, 20F36, 51M10

Retrieve articles in all journals with MSC (2010): 11H56, 20F05, 20F55, 20D08, 20F36, 51M10


Additional Information

Tathagata Basak
Affiliation: Department of Mathematics, Iowa State University, Ames, Iowa 50011
Email: tathagat@iastate.edu

DOI: https://doi.org/10.1090/tran/6558
Keywords: Complex hyperbolic reflection group, Leech lattice, bimonster, Artin group, orbifold fundamental group, generator and relation
Received by editor(s): December 9, 2013
Received by editor(s) in revised form: April 15, 2014
Published electronically: October 5, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society