Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Directional upper derivatives and the chain rule formula for locally Lipschitz functions on Banach spaces


Authors: Olga Maleva and David Preiss
Journal: Trans. Amer. Math. Soc. 368 (2016), 4685-4730
MSC (2010): Primary 46G05; Secondary 26B30, 58C20
DOI: https://doi.org/10.1090/tran/6480
Published electronically: November 18, 2015
MathSciNet review: 3456158
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Motivated by an attempt to find a general chain rule formula for differentiating the composition $ f\circ g$ of Lipschitz functions $ f$ and $ g$ that would be as close as possible to the standard formula $ (f\circ g)'(x) = f'(g(x))\circ g'(x)$, we show that this formula holds without any artificial assumptions provided derivatives are replaced by complete derivative assignments. The idea behind these assignments is that the derivative of $ f$ at $ y$ is understood as defined only in the direction of a suitable ``tangent space'' $ U(f,y)$ (and so it exists at every point), but these tangent spaces are chosen in such a way that for any $ g$ they contain the range of $ g'(x)$ for almost every $ x$. Showing the existence of such assignments leads us to a detailed study of derived sets and the ways in which they describe pointwise behavior of Lipschitz functions.


References [Enhancements On Off] (What's this?)

  • [1] Giovanni Alberti, Marianna Csörnyei, and David Preiss, Differentiability of Lipschitz functions, structure of null sets, and other problems, Proceedings of the International Congress of Mathematicians. Volume III, Hindustan Book Agency, New Delhi, 2010, pp. 1379-1394. MR 2827846 (2012g:26016)
  • [2] L. Ambrosio and G. Dal Maso, A general chain rule for distributional derivatives, Proc. Amer. Math. Soc. 108 (1990), no. 3, 691-702. MR 969514 (90j:26019), https://doi.org/10.2307/2047789
  • [3] N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces, Studia Math. 57 (1976), no. 2, 147-190. MR 0425608 (54 #13562)
  • [4] Yoav Benyamini and Joram Lindenstrauss, Geometric nonlinear functional analysis. Vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000. MR 1727673 (2001b:46001)
  • [5] D. N. Bessis and F. H. Clarke, Partial subdifferentials, derivates and Rademacher's theorem, Trans. Amer. Math. Soc. 351 (1999), no. 7, 2899-2926 (English, with English and French summaries). MR 1475676 (2000d:49022), https://doi.org/10.1090/S0002-9947-99-02203-5
  • [6] V. I. Bogachev and S. A. Shkarin, Differentiable and Lipschitz mappings of Banach spaces, Mat. Zametki 44 (1988), no. 5, 567-583, 700 (Russian); English transl., Math. Notes 44 (1988), no. 5-6, 790-798 (1989). MR 980578 (90b:58019), https://doi.org/10.1007/BF01158417
  • [7] Jonathan M. Borwein and Warren B. Moors, A chain rule for essentially smooth Lipschitz functions, SIAM J. Optim. 8 (1998), no. 2, 300-308. MR 1618794 (99g:49014), https://doi.org/10.1137/S1052623496297838
  • [8] Gustave Choquet, Application des propriétés descriptives de la fonction contingent à la théorie des fonctions de variable réelle et à la géométrie différentielle des variétés cartésiennes, J. Math. Pures Appl. (9) 26 (1947), 115-226 (1948) (French). MR 0023897 (9,419c)
  • [9] J. P. R. Christensen, Topology and Borel structure, Descriptive topology and set theory with applications to functional analysis and measure theory; North-Holland Mathematics Studies, Vol. 10. (Notas de Matemática, No. 51), North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1974. MR 0348724 (50 #1221)
  • [10] Frank H. Clarke, Optimization and nonsmooth analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983. MR 709590 (85m:49002)
  • [11] B. D. Craven, D. Ralph, and B. M. Glover, Small convex-valued subdifferentials in mathematical programming, Optimization 32 (1995), no. 1, 1-21. MR 1314158 (96h:49029), https://doi.org/10.1080/02331939508844032
  • [12] M. Csörnyei and P. W. Jones, Product Formulas for Measures and Applications to Analysis and Geometry, announced at http://www.math.nyu.edu/research/peterjonesabstract.pdf
  • [13] Michael Doré and Olga Maleva, A compact null set containing a differentiability point of every Lipschitz function, Math. Ann. 351 (2011), no. 3, 633-663. MR 2854108 (2012j:46052), https://doi.org/10.1007/s00208-010-0613-4
  • [14] Michael Doré and Olga Maleva, A compact universal differentiability set with Hausdorff dimension one, Israel J. Math. 191 (2012), no. 2, 889-900. MR 3011499, https://doi.org/10.1007/s11856-012-0014-3
  • [15] Michael Doré and Olga Maleva, A universal differentiability set in Banach spaces with separable dual, J. Funct. Anal. 261 (2011), no. 6, 1674-1710. MR 2813484, https://doi.org/10.1016/j.jfa.2011.05.016
  • [16] M. Fabián and D. Preiss, On intermediate differentiability of Lipschitz functions on certain Banach spaces, Proc. Amer. Math. Soc. 113 (1991), no. 3, 733-740. MR 1074753 (92g:46048), https://doi.org/10.2307/2048609
  • [17] M. Fabián and N. V. Zhivkov, A characterization of Asplund spaces with the help of local $ \epsilon $-supports of Ekeland and Lebourg, C. R. Acad. Bulgare Sci. 38 (1985), no. 6, 671-674. MR 805439 (87e:46021)
  • [18] Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR 0257325 (41 #1976)
  • [19] Thomas Fowler and David Preiss, A simple proof of Zahorski's description of non-differentiability sets of Lipschitz functions, Real Anal. Exchange 34 (2009), no. 1, 127-138. MR 2527127 (2010e:26003)
  • [20] R. Fry, Approximation by functions with bounded derivative on Banach spaces, Bull. Austral. Math. Soc. 69 (2004), no. 1, 125-131. MR 2040055 (2005a:46030), https://doi.org/10.1017/S0004972700034316
  • [21] J. R. Giles and Scott Sciffer, Locally Lipschitz functions are generically pseudo-regular on separable Banach spaces, Bull. Austral. Math. Soc. 47 (1993), no. 2, 205-212. MR 1210135 (94a:58022), https://doi.org/10.1017/S0004972700012430
  • [22] Petr Hájek and Michal Johanis, Smooth approximations, J. Funct. Anal. 259 (2010), no. 3, 561-582. MR 2644097 (2011i:46036), https://doi.org/10.1016/j.jfa.2010.04.020
  • [23] A. D. Ioffe, Typical convexity (concavity) of Dini-Hadamard upper (lower) directional derivatives of functions on separable Banach spaces, J. Convex Anal. 17 (2010), no. 3-4, 1019-1032. MR 2731290 (2012c:46088)
  • [24] Michal Johanis, Approximation of Lipschitz mappings, Serdica Math. J. 29 (2003), no. 2, 141-148. MR 1992549 (2004d:46017)
  • [25] Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597 (96e:03057)
  • [26] K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 397-403 (English, with Russian summary). MR 0188994 (32 #6421)
  • [27] Joram Lindenstrauss, On nonlinear projections in Banach spaces, Michigan Math. J. 11 (1964), 263-287. MR 0167821 (29 #5088)
  • [28] Joram Lindenstrauss and David Preiss, On Fréchet differentiability of Lipschitz maps between Banach spaces, Ann. of Math. (2) 157 (2003), no. 1, 257-288. MR 1954267 (2003k:46058), https://doi.org/10.4007/annals.2003.157.257
  • [29] Joram Lindenstrauss, David Preiss, and Jaroslav Tišer, Fréchet differentiability of Lipschitz functions and porous sets in Banach spaces, Annals of Mathematics Studies, vol. 179, Princeton University Press, Princeton, NJ, 2012. MR 2884141
  • [30] Piotr Mankiewicz, On the differentiability of Lipschitz mappings in Fréchet spaces, Studia Math. 45 (1973), 15-29. MR 0331055 (48 #9390)
  • [31] Philippe Michel and Jean-Paul Penot, Calcul sous-différentiel pour des fonctions lipschitziennes et non lipschitziennes, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), no. 12, 269-272 (French, with English summary). MR 745320 (85i:49027)
  • [32] J. Nájares R. and L. Zajíček, A $ \sigma $-porous set need not be $ \sigma $-bilaterally porous, Comment. Math. Univ. Carolin. 35 (1994), no. 4, 697-703. MR 1321240 (96b:26004)
  • [33] Aleš Nekvinda and Luděk Zajíček, A simple proof of the Rademacher theorem, Časopis Pěst. Mat. 113 (1988), no. 4, 337-341 (English, with Russian and Czech summaries). MR 981874 (90c:26043)
  • [34] A. Pełczyński, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, Dissertationes Math. Rozprawy Mat. 58 (1968), 92. MR 0227751 (37 #3335)
  • [35] D. Preiss, Differentiability of Lipschitz functions on Banach spaces, J. Funct. Anal. 91 (1990), no. 2, 312-345. MR 1058975 (91g:46051), https://doi.org/10.1016/0022-1236(90)90147-D
  • [36] D. Preiss and J. Tišer, Two unexpected examples concerning differentiability of Lipschitz functions on Banach spaces, Geometric aspects of functional analysis (Israel, 1992-1994) Oper. Theory Adv. Appl., vol. 77, Birkhäuser, Basel, 1995, pp. 219-238. MR 1353461 (96j:46040)
  • [37] D. Preiss and L. Zajíček, Directional derivatives of Lipschitz functions, Israel J. Math. 125 (2001), 1-27. MR 1853802 (2002f:46069), https://doi.org/10.1007/BF02773371
  • [38] Hans Rademacher, Über partielle und totale differenzierbarkeit von Funktionen mehrerer Variabeln und über die Transformation der Doppelintegrale, Math. Ann. 79 (1919), no. 4, 340-359 (German). MR 1511935, https://doi.org/10.1007/BF01498415
  • [39] Z. Zahorski, Punktmengen, in welchen eine stetige Funktion nicht differenzierbar ist, Rec. Math. [Mat. Sbornik] N. S. 9 (51) (1941), 487-510 (Russian., with German summary). MR 0004869 (3,73h)
  • [40] Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1-54 (French). MR 0037338 (12,247c)
  • [41] Luděk Zajíček, Sets of $ \sigma $-porosity and sets of $ \sigma $-porosity $ (q)$, Časopis Pěst. Mat. 101 (1976), no. 4, 350-359 (English, with Loose Russian summary). MR 0457731 (56 #15935)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 46G05, 26B30, 58C20

Retrieve articles in all journals with MSC (2010): 46G05, 26B30, 58C20


Additional Information

Olga Maleva
Affiliation: School of Mathematics, University of Birmingham, Birmingham, B15 2TT, United Kingdom
Email: O.Maleva@bham.ac.uk

David Preiss
Affiliation: Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
Email: D.Preiss@warwick.ac.uk

DOI: https://doi.org/10.1090/tran/6480
Received by editor(s): February 9, 2014
Received by editor(s) in revised form: May 14, 2014
Published electronically: November 18, 2015
Additional Notes: The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n.2011-ADG-20110209
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society