Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Escape rates and singular limiting distributions for intermittent maps with holes


Authors: Mark F. Demers and Bastien Fernandez
Journal: Trans. Amer. Math. Soc. 368 (2016), 4907-4932
MSC (2010): Primary 37C30, 37C40, 37D25, 37E05
DOI: https://doi.org/10.1090/tran/6481
Published electronically: December 3, 2015
MathSciNet review: 3456165
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the escape dynamics in the presence of a hole of a standard family of intermittent maps of the unit interval with neutral fixed point at the origin (and finite absolutely continuous invariant measure). Provided that the hole (is a cylinder that) does not contain any neighborhood of the origin, the surviving volume is shown to decay at polynomial speed with time. The associated polynomial escape rate depends on the density of the initial distribution, more precisely, on its behavior in the vicinity of the origin. Moreover, the associated normalized push forward measures are proved to converge to the point mass supported at the origin, in sharp contrast to systems with exponential escape rate. Finally, a similar result is obtained for more general systems with subexponential escape rates, namely that the Cesàro limit of normalized push forward measures is typically singular, invariant and supported on the asymptotic survivor set.


References [Enhancements On Off] (What's this?)

  • [1] V. S. Afraimovich and L. A. Bunimovich, Which hole is leaking the most: a topological approach to study open systems, Nonlinearity 23 (2010), no. 3, 643-656. MR 2593912 (2011e:37080), https://doi.org/10.1088/0951-7715/23/3/012
  • [2] Patrick Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0233396 (38 #1718)
  • [3] Henk Bruin, Mark Demers, and Ian Melbourne, Existence and convergence properties of physical measures for certain dynamical systems with holes, Ergodic Theory Dynam. Systems 30 (2010), no. 3, 687-728. MR 2643708 (2011g:37107), https://doi.org/10.1017/S0143385709000200
  • [4] L.A. Bunimovich and C.P. Dettmann, Open circular billiards and the Riemann hypothesis, Phys. Rev. Lett. 94 (2005), 100201.
  • [5] L. A. Bunimovich and C. P. Dettmann, Peeping at chaos: nondestructive monitoring of chaotic systems by measuring long-time escape rates, Europhys. Lett. EPL 80 (2007), no. 4, Art. 40001, 6. MR 2354135 (2008g:82066), https://doi.org/10.1209/0295-5075/80/40001
  • [6] Leonid A. Bunimovich and Alex Yurchenko, Where to place a hole to achieve a maximal escape rate, Israel J. Math. 182 (2011), 229-252. MR 2783972 (2012e:37012), https://doi.org/10.1007/s11856-011-0030-8
  • [7] N. N. Čencova, Natural invariant measure for the Smale horseshoe, Dokl. Akad. Nauk SSSR 256 (1981), no. 2, 294-298 (Russian). MR 600950 (82d:58033)
  • [8] N. Chernov and R. Markarian, Ergodic properties of Anosov maps with rectangular holes, Bol. Soc. Brasil. Mat. (N.S.) 28 (1997), no. 2, 271-314. MR 1479505 (98k:58140), https://doi.org/10.1007/BF01233395
  • [9] N. Chernov and R. Markarian, Anosov maps with rectangular holes. Nonergodic cases, Bol. Soc. Brasil. Mat. (N.S.) 28 (1997), no. 2, 315-342. MR 1479506 (99b:58142), https://doi.org/10.1007/BF01233396
  • [10] N. Chernov, R. Markarian, and S. Troubetzkoy, Conditionally invariant measures for Anosov maps with small holes, Ergodic Theory Dynam. Systems 18 (1998), no. 5, 1049-1073. MR 1653291 (99k:58111), https://doi.org/10.1017/S0143385798117492
  • [11] N. Chernov, R. Markarian, and S. Troubetzkoy, Invariant measures for Anosov maps with small holes, Ergodic Theory Dynam. Systems 20 (2000), no. 4, 1007-1044. MR 1779391 (2001f:37042), https://doi.org/10.1017/S0143385700000560
  • [12] H. van den Bedem and N. Chernov, Expanding maps of an interval with holes, Ergodic Theory Dynam. Systems 22 (2002), no. 3, 637-654. MR 1908547 (2003c:37046), https://doi.org/10.1017/S0143385702000329
  • [13] Pierre Collet, Servet Martínez, and Véronique Maume-Deschamps, On the existence of conditionally invariant probability measures in dynamical systems, Nonlinearity 13 (2000), no. 4, 1263-1274. MR 1767958 (2001e:37007), https://doi.org/10.1088/0951-7715/13/4/315
  • [14] P. Collet, S. Martínez, and V. Maume-Deschamps, Corrigendum: ``On the existence of conditionally invariant probability measures in dynamical systems'' [Nonlinearity 13 (2000), no. 4, 1263-1274; MR1767958], Nonlinearity 17 (2004), no. 5, 1985-1987. MR 2086159 (2005e:37002), https://doi.org/10.1088/0951-7715/17/5/C01
  • [15] Pierre Collet, Servet Martínez, and Bernard Schmitt, The Yorke-Pianigiani measure and the asymptotic law on the limit Cantor set of expanding systems, Nonlinearity 7 (1994), no. 5, 1437-1443. MR 1294552 (95i:28011)
  • [16] Mark F. Demers, Markov extensions for dynamical systems with holes: an application to expanding maps of the interval, Israel J. Math. 146 (2005), 189-221. MR 2151600 (2006d:37062), https://doi.org/10.1007/BF02773533
  • [17] Mark F. Demers, Markov extensions and conditionally invariant measures for certain logistic maps with small holes, Ergodic Theory Dynam. Systems 25 (2005), no. 4, 1139-1171. MR 2158400 (2007d:37057), https://doi.org/10.1017/S0143385704000963
  • [18] Mark F. Demers and Lai-Sang Young, Escape rates and conditionally invariant measures, Nonlinearity 19 (2006), no. 2, 377-397. MR 2199394 (2006i:37051), https://doi.org/10.1088/0951-7715/19/2/008
  • [19] Mark F. Demers and Carlangelo Liverani, Stability of statistical properties in two-dimensional piecewise hyperbolic maps, Trans. Amer. Math. Soc. 360 (2008), no. 9, 4777-4814. MR 2403704 (2009f:37021), https://doi.org/10.1090/S0002-9947-08-04464-4
  • [20] Mark Demers, Paul Wright, and Lai-Sang Young, Escape rates and physically relevant measures for billiards with small holes, Comm. Math. Phys. 294 (2010), no. 2, 353-388. MR 2579459 (2011a:37077), https://doi.org/10.1007/s00220-009-0941-y
  • [21] Mark F. Demers and Paul Wright, Behaviour of the escape rate function in hyperbolic dynamical systems, Nonlinearity 25 (2012), no. 7, 2133-2150. MR 2947939, https://doi.org/10.1088/0951-7715/25/7/2133
  • [22] Mark F. Demers, Dispersing billiards with small holes, Ergodic theory, open dynamics, and coherent structures, Springer Proc. Math. Stat., vol. 70, Springer, New York, 2014, pp. 137-170. MR 3213499, https://doi.org/10.1007/978-1-4939-0419-8_8
  • [23] Mark F. Demers, Escape rates and physical measures for the infinite horizon Lorentz gas with holes, Dyn. Syst. 28 (2013), no. 3, 393-422. MR 3170623, https://doi.org/10.1080/14689367.2013.814946
  • [24] Carl P. Dettmann and Orestis Georgiou, Survival probability for the stadium billiard, Phys. D 238 (2009), no. 23-24, 2395-2403. MR 2576082 (2011a:37078), https://doi.org/10.1016/j.physd.2009.09.019
  • [25] C. P. Dettmann and E. D. Leonel, Escape and transport for an open bouncer: Stretched exponential decays, Physica D 241 (2012), 403-408.
  • [26] P. A. Ferrari, H. Kesten, S. Martinez, and P. Picco, Existence of quasi-stationary distributions. A renewal dynamical approach, Ann. Probab. 23 (1995), no. 2, 501-521. MR 1334159 (96c:60089)
  • [27] Gary Froyland, Rua Murray, and Ognjen Stancevic, Spectral degeneracy and escape dynamics for intermittent maps with a hole, Nonlinearity 24 (2011), no. 9, 2435-2463. MR 2819930 (2012e:37042), https://doi.org/10.1088/0951-7715/24/9/003
  • [28] Ale Jan Homburg and Todd Young, Intermittency in families of unimodal maps, Ergodic Theory Dynam. Systems 22 (2002), no. 1, 203-225. MR 1889571 (2003h:37050), https://doi.org/10.1017/S0143385702000093
  • [29] Gerhard Keller and Carlangelo Liverani, Rare events, escape rates and quasistationarity: some exact formulae, J. Stat. Phys. 135 (2009), no. 3, 519-534. MR 2535206 (2011a:37012), https://doi.org/10.1007/s10955-009-9747-8
  • [30] Carlangelo Liverani and Véronique Maume-Deschamps, Lasota-Yorke maps with holes: conditionally invariant probability measures and invariant probability measures on the survivor set, Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), no. 3, 385-412 (English, with English and French summaries). MR 1978986 (2004c:37009), https://doi.org/10.1016/S0246-0203(02)00005-5
  • [31] Carlangelo Liverani, Benoît Saussol, and Sandro Vaienti, A probabilistic approach to intermittency, Ergodic Theory Dynam. Systems 19 (1999), no. 3, 671-685. MR 1695915 (2000d:37029), https://doi.org/10.1017/S0143385799133856
  • [32] Artur Lopes and Roberto Markarian, Open billiards: invariant and conditionally invariant probabilities on Cantor sets, SIAM J. Appl. Math. 56 (1996), no. 2, 651-680. MR 1381665 (97a:58108), https://doi.org/10.1137/S0036139995279433
  • [33] Giulio Pianigiani and James A. Yorke, Expanding maps on sets which are almost invariant. Decay and chaos, Trans. Amer. Math. Soc. 252 (1979), 351-366. MR 534126 (80i:58030), https://doi.org/10.2307/1998093
  • [34] P. A. Richardson, Jr., Natural measures on the unstable and invariant manifolds of open billiard dynamical systems, Doctoral Dissertation, Department of Mathematics, University of North Texas (1999).
  • [35] H. L. Royden, Real analysis, 3rd ed., Macmillan Publishing Company, New York, 1988. MR 1013117 (90g:00004)
  • [36] E. Seneta and D. Vere-Jones, On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states, J. Appl. Probability 3 (1966), 403-434. MR 0207047 (34 #6863)
  • [37] D. Vere-Jones, Geometric ergodicity in denumerable Markov chains, Quart. J. Math. Oxford Ser. (2) 13 (1962), 7-28. MR 0141160 (25 #4571)
  • [38] A. M. Yaglom, Certain limit theorems of the theory of branching random processes, Doklady Akad. Nauk SSSR (N.S.) 56 (1947), 795-798 (Russian). MR 0022045 (9,149e)
  • [39] Lai-Sang Young, Recurrence times and rates of mixing, Israel J. Math. 110 (1999), 153-188. MR 1750438 (2001j:37062), https://doi.org/10.1007/BF02808180

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 37C30, 37C40, 37D25, 37E05

Retrieve articles in all journals with MSC (2010): 37C30, 37C40, 37D25, 37E05


Additional Information

Mark F. Demers
Affiliation: Department of Mathematics, Fairfield University, Fairfield, Connecticut 06824

Bastien Fernandez
Affiliation: Centre de Physique Théorique, CNRS - Aix-Marseille Université - Université de Toulon, Campus de Luminy, 13288 Marseille CEDEX 9, France

DOI: https://doi.org/10.1090/tran/6481
Received by editor(s): November 6, 2013
Received by editor(s) in revised form: May 8, 2014, and May 30, 2014
Published electronically: December 3, 2015
Additional Notes: The first author was partially supported by NSF grant DMS 1101572
The second author was partially supported by EU FET Project No. TOPDRIM 318121
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society