Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Existence of zero-order meromorphic solutions in detecting $ q$-difference Painlevé equations


Authors: Risto Korhonen and Zhi-Tao Wen
Journal: Trans. Amer. Math. Soc. 368 (2016), 4993-5008
MSC (2010): Primary 39A13; Secondary 33E17, 30D35
DOI: https://doi.org/10.1090/tran/6491
Published electronically: October 28, 2015
MathSciNet review: 3456168
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The existence of zero-order meromorphic solutions is used as a sufficient condition in detecting $ q$-difference equations of Painlevé type. It is shown that demanding the existence of at least one non-rational zero-order meromorphic solution $ w(z)$ is sufficient to reduce a canonical class of $ q$-difference equations with rational coefficients into a short list of Painlevé type $ q$-difference equations, unless $ w(z)$ is simultaneously a solution of a $ q$-difference Riccati equation of a specific form.


References [Enhancements On Off] (What's this?)

  • [1] M. J. Ablowitz, R. Halburd, and B. Herbst, On the extension of the Painlevé property to difference equations, Nonlinearity 13 (2000), no. 3, 889-905. MR 1759006 (2001g:39003), https://doi.org/10.1088/0951-7715/13/3/321
  • [2] D. C. Barnett, R. G. Halburd, W. Morgan, and R. J. Korhonen, Nevanlinna theory for the $ q$-difference operator and meromorphic solutions of $ q$-difference equations, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), no. 3, 457-474. MR 2332677 (2008f:30072), https://doi.org/10.1017/S0308210506000102
  • [3] Walter Bergweiler, Katsuya Ishizaki, and Niro Yanagihara, Meromorphic solutions of some functional equations, Methods Appl. Anal. 5 (1998), no. 3, 248-258. MR 1659151 (2000a:39025)
  • [4] L. Fuchs, Sur quelques équations différentielles linéares du second ordre, C. R. Acad. Sci., Paris 141 (1905), 555-558.
  • [5] B. Gambier, Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes, Acta Math. 33 (1910), no. 1, 1-55 (French). MR 1555055, https://doi.org/10.1007/BF02393211
  • [6] B. Grammaticos, A. Ramani, and V. Papageorgiou, Do integrable mappings have the Painlevé property?, Phys. Rev. Lett. 67 (1991), no. 14, 1825-1828. MR 1125950 (92f:58081), https://doi.org/10.1103/PhysRevLett.67.1825
  • [7] Gary G. Gundersen, Janne Heittokangas, Ilpo Laine, Jarkko Rieppo, and Dequi Yang, Meromorphic solutions of generalized Schröder equations, Aequationes Math. 63 (2002), no. 1-2, 110-135. MR 1891280 (2003b:30032), https://doi.org/10.1007/s00010-002-8010-z
  • [8] R. G. Halburd, Diophantine integrability, J. Phys. A 38 (2005), no. 16, L263-L269. MR 2131425 (2005k:39021), https://doi.org/10.1088/0305-4470/38/16/L01
  • [9] R. G. Halburd, Risto Korhonen, and Kazuya Tohge, Holomorphic curves with shift-invariant hyperplane preimages, Trans. Amer. Math. Soc. 366 (2014), no. 8, 4267-4298. MR 3206459, https://doi.org/10.1090/S0002-9947-2014-05949-7
  • [10] R. G. Halburd and R. J. Korhonen, Finite-order meromorphic solutions and the discrete Painlevé equations, Proc. Lond. Math. Soc. (3) 94 (2007), no. 2, 443-474. MR 2308234 (2008c:39006), https://doi.org/10.1112/plms/pdl012
  • [11] R. G. Halburd and R. J. Korhonen, Meromorphic solutions of difference equations, integrability and the discrete Painlevé equations, J. Phys. A 40 (2007), no. 6, R1-R38. MR 2343636 (2009d:34214), https://doi.org/10.1088/1751-8113/40/6/R01
  • [12] W. K. Hayman, On the characteristic of functions meromorphic in the plane and of their integrals, Proc. London Math. Soc. (3) 14a (1965), 93-128. MR 0180679 (31 #4910)
  • [13] J. Hietarinta and C.-M. Viallet, Singularity confinement and chaos in discrete systems, Phys. Rev. Lett. 81 (1998), 325-328.
  • [14] Ilpo Laine, Nevanlinna theory and complex differential equations, de Gruyter Studies in Mathematics, vol. 15, Walter de Gruyter & Co., Berlin, 1993. MR 1207139 (94d:34008)
  • [15] Ilpo Laine and Chung-Chun Yang, Clunie theorems for difference and $ q$-difference polynomials, J. Lond. Math. Soc. (2) 76 (2007), no. 3, 556-566. MR 2377111 (2009b:30063), https://doi.org/10.1112/jlms/jdm073
  • [16] J. Malmquist, Sur les fonctions a un nombre fini de branches définies par les équations différentielles du premier ordre, Acta Math. 36 (1913), no. 1, 297-343 (French). MR 1555091, https://doi.org/10.1007/BF02422385
  • [17] A. Z. Mohonko, The Nevanlinna characteristics of certain meromorphic functions, Teor. Funkciĭ Funkcional. Anal. i Priložen. 14 (1971), 83-87 (Russian). MR 0298006 (45 #7058)
  • [18] A. A. Mohonko and V. D. Mohonko, Estimates of the Nevanlinna characteristics of certain classes of meromorphic functions, and their applications to differential equations, Sibirsk. Mat. Ž. 15 (1974), 1305-1322, 1431 (Russian). MR 0404625 (53 #8425)
  • [19] P. Painlevé, Mémoire sur les équations différentielles dont l'intégrale générale est uniforme, Bull. Soc. Math. France 28 (1900), 201-261 (French). MR 1504376
  • [20] P. Painlevé, Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme, Acta Math. 25 (1902), no. 1, 1-85 (French). MR 1554937, https://doi.org/10.1007/BF02419020
  • [21] É. Picard, Mémoire sur la théorie des fonctions algébriques de deux variables, Journ. de Math. (4) V (1889), 135-319 (French).
  • [22] A. Ramani, B. Grammaticos, and J. Hietarinta, Discrete versions of the Painlevé equations, Phys. Rev. Lett. 67 (1991), no. 14, 1829-1832. MR 1125951 (92j:39011), https://doi.org/10.1103/PhysRevLett.67.1829
  • [23] J. A. G. Roberts and F. Vivaldi, Arithmetical method to detect integrability in maps, Phys. Rev. Lett. 90 (2003), no. 3, 034102, 4. MR 2017601 (2004i:37109), https://doi.org/10.1103/PhysRevLett.90.034102
  • [24] Onni Ronkainen, Meromorphic solutions of difference Painlevé equations, Ann. Acad. Sci. Fenn. Math. Diss. 155 (2010), 59. Dissertation, University of Eastern Finland, Joensuu, 2010. MR 2809556
  • [25] Georges Valiron, Sur la dérivée des fonctions algébroïdes, Bull. Soc. Math. France 59 (1931), 17-39 (French). MR 1504970
  • [26] Georges Valiron, Fonctions analytiques, Presses Universitaires de France, Paris, 1954 (French). MR 0061658 (15,861a)
  • [27] Alexander P. Veselov, Growth and integrability in the dynamics of mappings, Comm. Math. Phys. 145 (1992), no. 1, 181-193. MR 1155288 (93c:58177)
  • [28] Niro Yanagihara, Meromorphic solutions of some difference equations, Funkcial. Ekvac. 23 (1980), no. 3, 309-326. MR 621536 (82m:39006a)
  • [29] Jilong Zhang and Risto Korhonen, On the Nevanlinna characteristic of $ f(qz)$ and its applications, J. Math. Anal. Appl. 369 (2010), no. 2, 537-544. MR 2651699 (2011e:30088), https://doi.org/10.1016/j.jmaa.2010.03.038

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 39A13, 33E17, 30D35

Retrieve articles in all journals with MSC (2010): 39A13, 33E17, 30D35


Additional Information

Risto Korhonen
Affiliation: Department of Physics and Mathematics, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
Email: risto.korhonen@uef.fi

Zhi-Tao Wen
Affiliation: Department of Mathematics, Taiyuan University of Technology, 030024, Taiyuan, People’s Republic of China
Email: zhitaowen@gmail.com

DOI: https://doi.org/10.1090/tran/6491
Keywords: Painlev\'e, $q$-difference equation, meromorphic, Nevanlinna theory
Received by editor(s): September 13, 2013
Received by editor(s) in revised form: June 3, 2014
Published electronically: October 28, 2015
Additional Notes: The first author was supported in part by the Academy of Finland grant number 268009, and the second author was supported in part by China Scholarship Council (CSC)
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society