Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Gendo-symmetric algebras, canonical comultiplication, bar cocomplex and dominant dimension


Authors: Ming Fang and Steffen Koenig
Journal: Trans. Amer. Math. Soc. 368 (2016), 5037-5055
MSC (2010): Primary 16G10, 13E10
DOI: https://doi.org/10.1090/tran/6504
Published electronically: October 5, 2015
MathSciNet review: 3456170
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: To each endomorphism algebra $ A$ of a generator over a symmetric algebra, first a canonical comultiplication (possibly without a counit) is constructed and then a bar cocomplex. The algebras $ A$ are characterised by the existence of this data. The dominant dimension of $ A$ is shown to be determined by the exactness of the cocomplex at its beginning terms.


References [Enhancements On Off] (What's this?)

  • [1] Lowell Abrams, Two-dimensional topological quantum field theories and Frobenius algebras, J. Knot Theory Ramifications 5 (1996), no. 5, 569-587. MR 1414088 (97j:81292), https://doi.org/10.1142/S0218216596000333
  • [2] Lowell Abrams, Modules, comodules, and cotensor products over Frobenius algebras, J. Algebra 219 (1999), no. 1, 201-213. MR 1707668 (2001b:16038), https://doi.org/10.1006/jabr.1999.7901
  • [3] Maurice Auslander, Idun Reiten, and SmaløSverre O., Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1995. MR 1314422 (96c:16015)
  • [4] Ming Fang, Schur functors on QF-3 standardly stratified algebras, Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 2, 311-318. MR 2383358 (2009b:16027), https://doi.org/10.1007/s10114-007-0984-y
  • [5] Ming Fang, Permanents, Doty coalgebras and dominant dimension of Schur algebras, Adv. Math. 264 (2014), 155-182. MR 3250282, https://doi.org/10.1016/j.aim.2014.07.005
  • [6] Ming Fang and Steffen Koenig, Schur functors and dominant dimension, Trans. Amer. Math. Soc. 363 (2011), no. 3, 1555-1576. MR 2737277 (2011j:16012), https://doi.org/10.1090/S0002-9947-2010-05177-3
  • [7] Ming Fang and Steffen Koenig, Endomorphism algebras of generators over symmetric algebras, J. Algebra 332 (2011), 428-433. MR 2774695 (2012i:16022), https://doi.org/10.1016/j.jalgebra.2011.02.031
  • [8] James A. Green, Polynomial representations of $ {\rm GL}_{n}$, Lecture Notes in Mathematics, vol. 830, Springer-Verlag, Berlin-New York, 1980. MR 606556 (83j:20003)
  • [9] Otto Kerner and Kunio Yamagata, Morita algebras, J. Algebra 382 (2013), 185-202. MR 3034479, https://doi.org/10.1016/j.jalgebra.2013.02.013
  • [10] Alexander S. Kleshchev and Daniel K. Nakano, On comparing the cohomology of general linear and symmetric groups, Pacific J. Math. 201 (2001), no. 2, 339-355. MR 1875898 (2002i:20063), https://doi.org/10.2140/pjm.2001.201.339
  • [11] Joachim Kock, Frobenius algebras and 2D topological quantum field theories, London Mathematical Society Student Texts, vol. 59, Cambridge University Press, Cambridge, 2004. MR 2037238 (2005a:57028)
  • [12] Steffen König, Inger Heidi Slungård, and Changchang Xi, Double centralizer properties, dominant dimension, and tilting modules, J. Algebra 240 (2001), no. 1, 393-412. MR 1830559 (2002c:16018), https://doi.org/10.1006/jabr.2000.8726
  • [13] Kiiti Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 6 (1958), 83-142. MR 0096700 (20 #3183)
  • [14] Bruno J. Müller, The classification of algebras by dominant dimension, Canad. J. Math. 20 (1968), 398-409. MR 0224656 (37 #255)
  • [15] Tadasi Nakayama, On algebras with complete homology, Abh. Math. Sem. Univ. Hamburg 22 (1958), 300-307. MR 0104718 (21 #3471)
  • [16] Hiroyuki Tachikawa, Quasi-Frobenius rings and generalizations. $ {\rm QF}-3$ and $ {\rm QF}-1$ rings, Lecture Notes in Mathematics, Vol. 351, Springer-Verlag, Berlin-New York, 1973. Notes by Claus Michael Ringel. MR 0349740 (50 #2233)
  • [17] Kunio Yamagata, Frobenius algebras, Handbook of algebra, Vol. 1, North-Holland, Amsterdam, 1996, pp. 841-887. MR 1421820 (97k:16022), https://doi.org/10.1016/S1570-7954(96)80028-3

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 16G10, 13E10

Retrieve articles in all journals with MSC (2010): 16G10, 13E10


Additional Information

Ming Fang
Affiliation: Institute of Mathematics, Chinese Academy of Sciences Beijing 100190, People’s Republic of China
Email: fming@amss.ac.cn

Steffen Koenig
Affiliation: Institute of Algebra and Number Theory, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
Email: skoenig@mathematik.uni-stuttgart.de

DOI: https://doi.org/10.1090/tran/6504
Keywords: Endomorphism algebra, bar cocomplex, dominant dimension
Received by editor(s): January 22, 2014
Received by editor(s) in revised form: June 4, 2014
Published electronically: October 5, 2015
Additional Notes: The first author was supported by the National Natural Science Foundation of China (No.11001253 and No. 11271318)
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society