Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Morita equivalence of partial group actions and globalization


Authors: F. Abadie, M. Dokuchaev, R. Exel and J. J. Simón
Journal: Trans. Amer. Math. Soc. 368 (2016), 4957-4992
MSC (2010): Primary 16S35; Secondary 16W22, 46L05
DOI: https://doi.org/10.1090/tran/6525
Published electronically: November 6, 2015
MathSciNet review: 3456167
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a large class of partial actions of groups on rings, called regular, which contains all $ s$-unital partial actions as well as all partial actions on $ C^{\ast }$-algebras. For them the notion of Morita equivalence is introduced, and it is shown that any regular partial action is Morita equivalent to a globalizable one and that the globalization is essentially unique. It is also proved that Morita equivalent $ s$-unital partial actions on rings with orthogonal local units are stably isomorphic. In addition, we show that Morita equivalent $ s$-unital partial actions on commutative rings must be isomorphic, and an analogous result for $ C^{\ast }$-algebras is also established.


References [Enhancements On Off] (What's this?)

  • [1] F. Abadie, Sobre ações parciais, fibrados de Fell e grupóides, PhD Thesis, São Paulo, 1999.
  • [2] Fernando Abadie, Enveloping actions and Takai duality for partial actions, J. Funct. Anal. 197 (2003), no. 1, 14-67. MR 1957674 (2004c:46130), https://doi.org/10.1016/S0022-1236(02)00032-0
  • [3] Fernando Abadie, On partial actions and groupoids, Proc. Amer. Math. Soc. 132 (2004), no. 4, 1037-1047 (electronic). MR 2045419 (2005c:46073), https://doi.org/10.1090/S0002-9939-03-07300-3
  • [4] Marcelo Muniz S. Alves and Eliezer Batista, Enveloping actions for partial Hopf actions, Comm. Algebra 38 (2010), no. 8, 2872-2902. MR 2730285 (2011k:16058), https://doi.org/10.1080/00927870903095582
  • [5] Dirceu Bagio, Wagner Cortes, Miguel Ferrero, and Antonio Paques, Actions of inverse semigroups on algebras, Comm. Algebra 35 (2007), no. 12, 3865-3874. MR 2371262 (2008m:16067), https://doi.org/10.1080/00927870701511905
  • [6] Dirceu Bagio and Antonio Paques, Partial groupoid actions: globalization, Morita theory, and Galois theory, Comm. Algebra 40 (2012), no. 10, 3658-3678. MR 2982887, https://doi.org/10.1080/00927872.2011.592889
  • [7] L. Bemm, Ações parciais de grupos sobre anéis semiprimos, PhD Thesis, Porto Alegre, 2011.
  • [8] Laerte Bemm, Wagner Cortes, Saradia Della Flora, and Miguel Ferrero, Partial crossed products and Goldie rings, Comm. Algebra 43 (2015), no. 9, 3705-3724. MR 3360844, https://doi.org/10.1080/00927872.2014.923895
  • [9] Laerte Bemm and Miguel Ferrero, Globalization of partial actions on semiprime rings, J. Algebra Appl. 12 (2013), no. 4, 1250202, 9. MR 3037276, https://doi.org/10.1142/S0219498812502027
  • [10] Lawrence G. Brown, Philip Green, and Marc A. Rieffel, Stable isomorphism and strong Morita equivalence of $ C^*$-algebras, Pacific J. Math. 71 (1977), no. 2, 349-363. MR 0463928 (57 #3866)
  • [11] S. Caenepeel and E. De Groot, Galois corings applied to partial Galois theory, Proceedings of the International Conference on Mathematics and its Applications (ICMA 2004), Kuwait Univ. Dep. Math. Comput. Sci., Kuwait, 2005, pp. 117-134. MR 2143295 (2006e:16060)
  • [12] S. Caenepeel and K. Janssen, Partial (co)actions of Hopf algebras and partial Hopf-Galois theory, Comm. Algebra 36 (2008), no. 8, 2923-2946. MR 2440292 (2009d:16055), https://doi.org/10.1080/00927870802110334
  • [13] Paula A. A. B. Carvalho, Wagner Cortes, and Miguel Ferrero, Partial skew group rings over polycyclic by finite groups, Algebr. Represent. Theory 14 (2011), no. 3, 449-462. MR 2785917 (2012c:16074), https://doi.org/10.1007/s10468-009-9197-7
  • [14] Wagner Cortes, Partial skew polynomial rings and Jacobson rings, Comm. Algebra 38 (2010), no. 4, 1526-1548. MR 2656590 (2011j:16050), https://doi.org/10.1080/00927870902973904
  • [15] Wagner Cortes and Miguel Ferrero, Partial skew polynomial rings: prime and maximal ideals, Comm. Algebra 35 (2007), no. 4, 1183-1199. MR 2313659 (2008b:16038), https://doi.org/10.1080/00927870601142017
  • [16] Wagner Cortes and Miguel Ferrero, Globalization of partial actions on semiprime rings, Groups, rings and group rings, Contemp. Math., vol. 499, Amer. Math. Soc., Providence, RI, 2009, pp. 27-35. MR 2581923 (2011e:16078), https://doi.org/10.1090/conm/499/09788
  • [17] W. Cortes, M. Ferrero, and E. Marcos, Partial Actions on Categories, Preprint.
  • [18] Wagner Cortes, Miguel Ferrero, and Hidetoshi Marubayashi, Partial skew polynomial rings and Goldie rings, Comm. Algebra 36 (2008), no. 11, 4284-4295. MR 2460417 (2010b:16047), https://doi.org/10.1080/00927870802107645
  • [19] M. Dokuchaev, Partial actions: a survey, Groups, algebras and applications, Contemp. Math., vol. 537, Amer. Math. Soc., Providence, RI, 2011, pp. 173-184. MR 2799098 (2012f:16002), https://doi.org/10.1090/conm/537/10573
  • [20] M. Dokuchaev and R. Exel, Associativity of crossed products by partial actions, enveloping actions and partial representations, Trans. Amer. Math. Soc. 357 (2005), no. 5, 1931-1952. MR 2115083 (2005i:16066), https://doi.org/10.1090/S0002-9947-04-03519-6
  • [21] M. Dokuchaev, R. Exel, and J. J. Simón, Crossed products by twisted partial actions and graded algebras, J. Algebra 320 (2008), no. 8, 3278-3310. MR 2450727 (2009i:16070), https://doi.org/10.1016/j.jalgebra.2008.06.023
  • [22] M. Dokuchaev, R. Exel, and J. J. Simón, Globalization of twisted partial actions, Trans. Amer. Math. Soc. 362 (2010), no. 8, 4137-4160. MR 2608399 (2011i:16069), https://doi.org/10.1090/S0002-9947-10-04957-3
  • [23] Michael Dokuchaev, Miguel Ferrero, and Antonio Paques, Partial actions and Galois theory, J. Pure Appl. Algebra 208 (2007), no. 1, 77-87. MR 2269829 (2007i:13008), https://doi.org/10.1016/j.jpaa.2005.11.009
  • [24] Michael Dokuchaev, Ángel Del Río, and Juan Jacobo Simón, Globalizations of partial actions on nonunital rings, Proc. Amer. Math. Soc. 135 (2007), no. 2, 343-352. MR 2255280 (2007f:16075), https://doi.org/10.1090/S0002-9939-06-08503-0
  • [25] Ruy Exel, Circle actions on $ C^*$-algebras, partial automorphisms, and a generalized Pimsner-Voiculescu exact sequence, J. Funct. Anal. 122 (1994), no. 2, 361-401. MR 1276163 (95g:46122), https://doi.org/10.1006/jfan.1994.1073
  • [26] Ruy Exel, The Bunce-Deddens algebras as crossed products by partial automorphisms, Bol. Soc. Brasil. Mat. (N.S.) 25 (1994), no. 2, 173-179. MR 1306559 (95m:46091), https://doi.org/10.1007/BF01321306
  • [27] Ruy Exel, Approximately finite $ C^\ast $-algebras and partial automorphisms, Math. Scand. 77 (1995), no. 2, 281-288. MR 1379271 (97e:46085)
  • [28] Ruy Exel, Twisted partial actions: a classification of regular $ C^*$-algebraic bundles, Proc. London Math. Soc. (3) 74 (1997), no. 2, 417-443. MR 1425329 (98d:46075), https://doi.org/10.1112/S0024611597000154
  • [29] Ruy Exel, Partial actions of groups and actions of inverse semigroups, Proc. Amer. Math. Soc. 126 (1998), no. 12, 3481-3494. MR 1469405 (99b:46102), https://doi.org/10.1090/S0002-9939-98-04575-4
  • [30] Ruy Exel, Hecke algebras for protonormal subgroups, J. Algebra 320 (2008), no. 5, 1771-1813. MR 2437631 (2009g:20009), https://doi.org/10.1016/j.jalgebra.2008.05.001
  • [31] Ruy Exel, Marcelo Laca, and John Quigg, Partial dynamical systems and $ C^*$-algebras generated by partial isometries, J. Operator Theory 47 (2002), no. 1, 169-186. MR 1905819 (2003f:46108)
  • [32] R. Exel, T. Giordano, and D. Gonçalves, Enveloping algebras of partial actions as groupoid $ C^*$-algebras, J. Operator Theory 65 (2011), no. 1, 197-210. MR 2765764 (2012f:46096)
  • [33] Miguel Ferrero, Partial actions of groups on semiprime rings, Groups, rings and group rings, Lect. Notes Pure Appl. Math., vol. 248, Chapman & Hall/CRC, Boca Raton, FL, 2006, pp. 155-162. MR 2226190 (2007b:16076), https://doi.org/10.1201/9781420010961.ch14
  • [34] Jesús Ávila, Miguel Ferrero, and João Lazzarin, Partial actions and partial fixed rings, Comm. Algebra 38 (2010), no. 6, 2079-2091. MR 2675523 (2011g:16068), https://doi.org/10.1080/00927870903023139
  • [35] Miguel Ferrero and João Lazzarin, Partial actions and partial skew group rings, J. Algebra 319 (2008), no. 12, 5247-5264. MR 2423825 (2009d:16039), https://doi.org/10.1016/j.jalgebra.2007.12.009
  • [36] Peter A. Fillmore, A user's guide to operator algebras, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1996. A Wiley-Interscience Publication. MR 1385461 (97i:46094)
  • [37] Daiane Freitas and Antonio Paques, On partial Galois Azumaya extensions, Algebra Discrete Math. 11 (2011), no. 2, 64-77. MR 2858129 (2012h:16037)
  • [38] Kent R. Fuller, On rings whose left modules are direct sums of finitely generated modules, Proc. Amer. Math. Soc. 54 (1976), 39-44. MR 0393133 (52 #13943)
  • [39] José Luis García and Juan Jacobo Simón, Morita equivalence for idempotent rings, J. Pure Appl. Algebra 76 (1991), no. 1, 39-56. MR 1140639 (93b:16010), https://doi.org/10.1016/0022-4049(91)90096-K
  • [40] N. D. Gilbert, Actions and expansions of ordered groupoids, J. Pure Appl. Algebra 198 (2005), no. 1-3, 175-195. MR 2132881 (2006a:20101), https://doi.org/10.1016/j.jpaa.2004.11.006
  • [41] Daniel Gonçalves and Danilo Royer, Leavitt path algebras as partial skew group rings, Comm. Algebra 42 (2014), no. 8, 3578-3592. MR 3196063, https://doi.org/10.1080/00927872.2013.790038
  • [42] Jesús Ávila Guzmán and João Lazzarin, A Morita context related to finite groups acting partially on a ring, Algebra Discrete Math. 3 (2009), 49-61. MR 2640387 (2011i:16066)
  • [43] J. Kellendonk and Mark V. Lawson, Partial actions of groups, Internat. J. Algebra Comput. 14 (2004), no. 1, 87-114. MR 2041539 (2004m:20120), https://doi.org/10.1142/S0218196704001657
  • [44] Mark V. Lawson, Inverse semigroups. The theory of partial symmetries, World Scientific Publishing Co., Inc., River Edge, NJ, 1998. The theory of partial symmetries. MR 1694900 (2000g:20123)
  • [45] Kevin McClanahan, $ K$-theory for partial crossed products by discrete groups, J. Funct. Anal. 130 (1995), no. 1, 77-117. MR 1331978 (96i:46083), https://doi.org/10.1006/jfan.1995.1064
  • [46] Michael Megrelishvili and Lutz Schröder, Globalization of confluent partial actions on topological and metric spaces, Topology Appl. 145 (2004), no. 1-3, 119-145. MR 2100868 (2005g:54040), https://doi.org/10.1016/j.topol.2004.06.006
  • [47] Antonio Paques, Virgínia Rodrigues, and Alveri Sant'ana, Galois correspondences for partial Galois Azumaya extensions, J. Algebra Appl. 10 (2011), no. 5, 835-847. MR 2847502 (2012i:16033), https://doi.org/10.1142/S0219498811004999
  • [48] Antonio Paques and Alveri Sant'Ana, When is a crossed product by a twisted partial action Azumaya?, Comm. Algebra 38 (2010), no. 3, 1093-1103. MR 2650393 (2011h:16024), https://doi.org/10.1080/00927870902888250
  • [49] John Quigg and Iain Raeburn, Characterisations of crossed products by partial actions, J. Operator Theory 37 (1997), no. 2, 311-340. MR 1452280 (99a:46121)
  • [50] Iain Raeburn and Dana P. Williams, Morita equivalence and continuous-trace $ C^*$-algebras, Mathematical Surveys and Monographs, vol. 60, American Mathematical Society, Providence, RI, 1998. MR 1634408 (2000c:46108)
  • [51] Nándor Sieben, Morita equivalence of $ C^\ast $-crossed products by inverse semigroup actions and partial actions, Rocky Mountain J. Math. 31 (2001), no. 2, 661-686. MR 1840961 (2002f:46134), https://doi.org/10.1216/rmjm/1020171582
  • [52] Benjamin Steinberg, Partial actions of groups on cell complexes, Monatsh. Math. 138 (2003), no. 2, 159-170. MR 1964463 (2004e:57006), https://doi.org/10.1007/s00605-002-0521-0

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 16S35, 16W22, 46L05

Retrieve articles in all journals with MSC (2010): 16S35, 16W22, 46L05


Additional Information

F. Abadie
Affiliation: Centro de Matemática, Facultad de Ciencias, Universidad de la República, Iguá 4225, CP 11400, Montevideo, Uruguay
Email: fabadie@cmat.edu.uy

M. Dokuchaev
Affiliation: Instituto de Matemática e Estatística, Universidade de São Paulo, 05508-090 São Paulo, SP, Brasil
Email: dokucha@ime.usp.br

R. Exel
Affiliation: Departamento de Matemática, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brasil
Email: exel@mtm.ufsc.br

J. J. Simón
Affiliation: Departamento de Matemáticas, Universidad de Murcia, 30071 Murcia, España
Email: jsimon@um.es

DOI: https://doi.org/10.1090/tran/6525
Keywords: Partial action, skew group ring, Morita equivalence, $C^{\ast}$-algebra
Received by editor(s): June 5, 2013
Received by editor(s) in revised form: June 2, 2014
Published electronically: November 6, 2015
Additional Notes: This work was partially supported by CNPq of Brazil (Proc. 305975/2013-7, Proc. 300362/2010-2), Fapesp of Brazil (Proc. Proc. 2009/52665-0), MINECO (Ministerio de Economía y Competitividad), (Fondo Europeo de Desarrollo Regional) project MTM2012-35240, Spain, and Fundación Séneca of Murcia, Programa Hispano Brasileño de Cooperación Universitaria PHB2012-0135, Spain
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society