Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Reverse and dual Loomis-Whitney-type inequalities


Authors: Stefano Campi, Richard J. Gardner and Paolo Gronchi
Journal: Trans. Amer. Math. Soc. 368 (2016), 5093-5124
MSC (2010): Primary 52A20, 52A40; Secondary 52A38
DOI: https://doi.org/10.1090/tran/6668
Published electronically: October 20, 2015
MathSciNet review: 3456173
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Various results are proved giving lower bounds for the $ m$th intrinsic volume $ V_m(K)$, $ m=1,\dots ,n-1$, of a compact convex set $ K$ in $ \mathbb{R}^n$, in terms of the $ m$th intrinsic volumes of its projections on the coordinate hyperplanes (or its intersections with the coordinate hyperplanes). The bounds are sharp when $ m=1$ and $ m=n-1$. These are reverse (or dual, respectively) forms of the Loomis-Whitney inequality and versions of it that apply to intrinsic volumes. For the intrinsic volume $ V_1(K)$, which corresponds to mean width, the inequality obtained confirms a conjecture of Betke and McMullen made in 1983.


References [Enhancements On Off] (What's this?)

  • [1] Paul Balister and Béla Bollobás, Projections, entropy and sumsets, Combinatorica 32 (2012), no. 2, 125-141. MR 2927635, https://doi.org/10.1007/s00493-012-2453-1
  • [2] Adi Ben-Israel, The change-of-variables formula using matrix volume, SIAM J. Matrix Anal. Appl. 21 (1999), no. 1, 300-312 (electronic). MR 1718666 (2000j:15005), https://doi.org/10.1137/S0895479895296896
  • [3] U. Betke and P. McMullen, Estimating the sizes of convex bodies from projections, J. London Math. Soc. (2) 27 (1983), no. 3, 525-538. MR 697145 (84g:52005), https://doi.org/10.1112/jlms/s2-27.3.525
  • [4] Jonathan Bennett, Anthony Carbery, and Terence Tao, On the multilinear restriction and Kakeya conjectures, Acta Math. 196 (2006), no. 2, 261-302. MR 2275834 (2007h:42019), https://doi.org/10.1007/s11511-006-0006-4
  • [5] Y. D. Burago and V. A. Zalgaller, Geometric inequalities, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer-Verlag, Berlin, 1988. Translated from the Russian by A. B. Sosinskiĭ; Springer Series in Soviet Mathematics. MR 936419 (89b:52020)
  • [6] Stefano Campi, Andrea Colesanti, and Paolo Gronchi, Convex bodies with extremal volumes having prescribed brightness in finitely many directions, Geom. Dedicata 57 (1995), no. 2, 121-133. MR 1347320 (97c:52018), https://doi.org/10.1007/BF01264932
  • [7] Stefano Campi and Paolo Gronchi, Estimates of Loomis-Whitney type for intrinsic volumes, Adv. in Appl. Math. 47 (2011), no. 3, 545-561. MR 2822201 (2012f:52020), https://doi.org/10.1016/j.aam.2011.01.001
  • [8] D. R. Conant and W. A. Beyer, Generalized Pythagorean theorem, Amer. Math. Monthly 81 (1974), 262-265. MR 0338322 (49 #3087)
  • [9] S. R. Finch, Mean width of a regular cross-polytope, arXiv:1112.0499.
  • [10] W. J. Firey, Pythagorean inequalities for convex bodies, Math. Scand. 8 (1960), 168-170. MR 0125496 (23 #A2797)
  • [11] Richard J. Gardner, Geometric tomography, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, Cambridge, 2006. MR 2251886 (2007i:52010)
  • [12] D. J. H. Garling, Inequalities: a journey into linear analysis, Cambridge University Press, Cambridge, 2007. MR 2343341 (2009d:46001)
  • [13] Misha Gromov, Entropy and isoperimetry for linear and non-linear group actions, Groups Geom. Dyn. 2 (2008), no. 4, 499-593. MR 2442946 (2010h:37011), https://doi.org/10.4171/GGD/48
  • [14] Peter M. Gruber, Convex and discrete geometry, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 336, Springer, Berlin, 2007. MR 2335496 (2008f:52001)
  • [15] Katalin Gyarmati, Máté Matolcsi, and Imre Z. Ruzsa, A superadditivity and submultiplicativity property for cardinalities of sumsets, Combinatorica 30 (2010), no. 2, 163-174. MR 2676833 (2011d:11013), https://doi.org/10.1007/s00493-010-2413-6
  • [16] H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957 (German). MR 0102775 (21 #1561)
  • [17] Te Sun Han, Nonnegative entropy measures of multivariate symmetric correlations, Information and Control 36 (1978), no. 2, 133-156. MR 0464499 (57 #4429)
  • [18] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1959.
  • [19] Daniel Hug and Rolf Schneider, Reverse inequalities for zonoids and their application, Adv. Math. 228 (2011), no. 5, 2634-2646. MR 2838052 (2012k:52021), https://doi.org/10.1016/j.aim.2011.07.018
  • [20] L. H. Loomis and H. Whitney, An inequality related to the isoperimetric inequality, Bull. Amer. Math. Soc 55 (1949), 961-962. MR 0031538 (11,166d)
  • [21] Erwin Lutwak, Deane Yang, and Gaoyong Zhang, A new ellipsoid associated with convex bodies, Duke Math. J. 104 (2000), no. 3, 375-390. MR 1781476 (2001j:52011), https://doi.org/10.1215/S0012-7094-00-10432-2
  • [22] Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Volume inequalities for isotropic measures, Amer. J. Math. 129 (2007), no. 6, 1711-1723. MR 2369894 (2008k:52010), https://doi.org/10.1353/ajm.2007.0038
  • [23] N. Madras, D. W. Sumners, and S. G. Whittington, Almost unknotted embeddings of graphs in $ \mathbb{Z}^3$ and higher dimensional analogues, J. Knot Theory Ramifications 18 (2009), no. 8, 1031-1048. MR 2554333 (2010k:57017), https://doi.org/10.1142/S0218216509007336
  • [24] Mathieu Meyer, A volume inequality concerning sections of convex sets, Bull. London Math. Soc. 20 (1988), no. 2, 151-155. MR 924244 (89e:52023), https://doi.org/10.1112/blms/20.2.151
  • [25] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra, Worst-case optimal join algorithms, Proc. 31st Symp. on Principles of Database Systems, Association for Computing Machinery, NY (2012), pp. 37-48. arXiv:1203.1952v1.
  • [26] Washek F. Pfeffer, The Riemann approach to integration, Cambridge Tracts in Mathematics, vol. 109, Cambridge University Press, Cambridge, 1993. MR 1268404 (95f:26001)
  • [27] Franz E. Schuster and Manuel Weberndorfer, Volume inequalities for asymmetric Wulff shapes, J. Differential Geom. 92 (2012), no. 2, 263-283. MR 2998673
  • [28] Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521 (94d:52007)
  • [29] G. C. Shephard, Shadow systems of convex sets, Israel J. Math. 2 (1964), 229-236. MR 0179686 (31 #3931)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 52A20, 52A40, 52A38

Retrieve articles in all journals with MSC (2010): 52A20, 52A40, 52A38


Additional Information

Stefano Campi
Affiliation: Dipartimento di Ingegneria dell’Informazione e di Scienze Matematiche, Università degli Studi di Siena, Via Roma 56, 53100 Siena, Italy
Email: campi@dii.unisi.it

Richard J. Gardner
Affiliation: Department of Mathematics, Western Washington University, Bellingham, Washington 98225-9063
Email: Richard.Gardner@wwu.edu

Paolo Gronchi
Affiliation: Dipartimento di Matematica e Informatica “Ulisse Dini”, Università degli Studi di Firenze, Piazza Ghiberti 27, 50122 Firenze, Italy
Email: paolo@fi.iac.cnr.it

DOI: https://doi.org/10.1090/tran/6668
Keywords: Convex body, zonoid, intrinsic volume, Loomis-Whitney inequality, Meyer's inequality, Betke-McMullen conjecture, Cauchy-Binet theorem, geometric tomography
Received by editor(s): June 25, 2014
Published electronically: October 20, 2015
Additional Notes: The second author was supported in part by U.S. National Science Foundation Grant DMS-1103612.
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society