Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Rings of invariants for modular representations of the Klein four group


Authors: Müfit Sezer and R. James Shank
Journal: Trans. Amer. Math. Soc. 368 (2016), 5655-5673
MSC (2010): Primary 13A50
DOI: https://doi.org/10.1090/tran/6516
Published electronically: December 3, 2015
MathSciNet review: 3458394
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the rings of invariants for the indecomposable modular representations of the Klein four group. For each such representation we compute the Noether number and give minimal generating sets for the Hilbert ideal and the field of fractions. We observe that, with the exception of the regular representation, the Hilbert ideal for each of these representations is a complete intersection.


References [Enhancements On Off] (What's this?)

  • [1] Alejandro Adem and R. James Milgram, Cohomology of finite groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 309, Springer-Verlag, Berlin, 1994. MR 1317096 (96f:20082)
  • [2] D. J. Benson, Representations and cohomology. I., Basic representation theory of finite groups and associative algebras. Cambridge Studies in Advanced Mathematics, vol. 30, Cambridge University Press, Cambridge, 1991. MR 1110581 (92m:20005)
  • [3] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language., Computational algebra and number theory (London, 1993). J. Symbolic Comput. 24 (1997), no. 3-4, 235-265. MR 1484478, https://doi.org/10.1006/jsco.1996.0125
  • [4] H. E. A. Campbell and J. Chuai, Invariant fields and localized invariant rings of $ p$-groups, Q. J. Math. 58 (2007), no. 2, 151-157. MR 2334859 (2008f:13007), https://doi.org/10.1093/qmath/ham011
  • [5] H. E. A. Campbell and I. P. Hughes, Vector invariants of $ U_2(\mathbf {F}_p)$: a proof of a conjecture of Richman, Adv. Math. 126 (1997), no. 1, 1-20. MR 1440251 (98c:13007), https://doi.org/10.1006/aima.1996.1590
  • [6] H. E. A. Campbell, I. P. Hughes, R. J. Shank, and D. L. Wehlau, Bases for rings of coinvariants, Transform. Groups 1 (1996), no. 4, 307-336. MR 1424447 (98a:13011), https://doi.org/10.1007/BF02549211
  • [7] H. E. A. Campbell, R. J. Shank, and D. L. Wehlau, Vector invariants for the two-dimensional modular representation of a cyclic group of prime order, Adv. Math. 225 (2010), no. 2, 1069-1094. MR 2671188 (2011f:13008), https://doi.org/10.1016/j.aim.2010.03.018
  • [8] H. E. A. Campbell, R. J. Shank, and D. L. Wehlau, Rings of invariants for modular representations of elementary abelian $ p$-groups, Transform. Groups 18 (2013), no. 1, 1-22. MR 3022756, https://doi.org/10.1007/s00031-013-9207-z
  • [9] Harm Derksen and Gregor Kemper, Computational invariant theory, Invariant Theory and Algebraic Transformation Groups, I., Encyclopaedia of Mathematical Sciences, 130. Springer-Verlag, Berlin, 2002. MR 1918599 (2003g:13004)
  • [10] Jonathan Elmer and Peter Fleischmann, On the depth of modular invariant rings for the groups $ C_p\times C_p$, Symmetry and spaces, Progr. Math., vol. 278, Birkhäuser Boston, Inc., Boston, MA, 2010, pp. 45-61. MR 2562623 (2011a:13010), https://doi.org/10.1007/978-0-8176-4875-6_4
  • [11] Mark Feshbach, $ p$-subgroups of compact Lie groups and torsion of infinite height in $ H^{\ast } (BG)$. II, Michigan Math. J. 29 (1982), no. 3, 299-306. MR 674283 (83m:55026)
  • [12] P. Fleischmann, M. Sezer, R. J. Shank, and C. F. Woodcock, The Noether numbers for cyclic groups of prime order, Adv. Math. 207 (2006), no. 1, 149-155. MR 2264069 (2007e:13010), https://doi.org/10.1016/j.aim.2005.11.009
  • [13] Peter Fleischmann and Chris Woodcock, Non-linear group actions with polynomial invariant rings and a structure theorem for modular Galois extensions, Proc. Lond. Math. Soc. (3) 103 (2011), no. 5, 826-846. MR 2852290 (2012h:13012), https://doi.org/10.1112/plms/pdr016
  • [14] Ming-chang Kang, Fixed fields of triangular matrix groups, J. Algebra 302 (2006), no. 2, 845-847. MR 2293785 (2007m:13006), https://doi.org/10.1016/j.jalgebra.2006.03.037
  • [15] Martin Kohls and Müfit Sezer, Separating invariants for the Klein four group and cyclic groups, Internat. J. Math. 24 (2013), no. 6, 1350046, 11. MR 3078070, https://doi.org/10.1142/S0129167X13500468
  • [16] David R. Richman, On vector invariants over finite fields, Adv. Math. 81 (1990), no. 1, 30-65. MR 1051222 (91g:15020), https://doi.org/10.1016/0001-8708(90)90003-6
  • [17] Müfit Sezer, Coinvariants and the regular representation of a cyclic $ P$-group, Math. Z. 273 (2013), no. 1-2, 539-546. MR 3010174, https://doi.org/10.1007/s00209-012-1018-8
  • [18] R. James Shank and David L. Wehlau, The transfer in modular invariant theory, J. Pure Appl. Algebra 142 (1999), no. 1, 63-77. MR 1716047 (2000i:13010), https://doi.org/10.1016/S0022-4049(98)00036-X
  • [19] R. James Shank and David L. Wehlau, Computing modular invariants of $ p$-groups, J. Symbolic Comput. 34 (2002), no. 5, 307-327. MR 1937464 (2003j:13006), https://doi.org/10.1006/jsco.2002.0558
  • [20] R. James Shank and David L. Wehlau, Decomposing symmetric powers of certain modular representations of cyclic groups, Symmetry and spaces, Progr. Math., vol. 278, Birkhäuser Boston, Inc., Boston, MA, 2010, pp. 169-196. MR 2562628 (2010j:13015), https://doi.org/10.1007/978-0-8176-4875-6_9
  • [21] Bernd Sturmfels, Gröbner bases and convex polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996. MR 1363949 (97b:13034)
  • [22] Peter Symonds, On the Castelnuovo-Mumford regularity of rings of polynomial invariants, Ann. of Math. (2) 174 (2011), no. 1, 499-517. MR 2811606 (2012j:13006), https://doi.org/10.4007/annals.2011.174.1.14
  • [23] David L. Wehlau, Invariants for the modular cyclic group of prime order via classical invariant theory, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 3, 775-803. MR 3085091, https://doi.org/10.4171/JEMS/376

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 13A50

Retrieve articles in all journals with MSC (2010): 13A50


Additional Information

Müfit Sezer
Affiliation: Department of Mathematics, Bilkent University, 06800 Ankara, Turkey
Email: sezer@fen.bilkent.edu.tr

R. James Shank
Affiliation: School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, CT2 7NF, United Kingdom
Email: R.J.Shank@kent.ac.uk

DOI: https://doi.org/10.1090/tran/6516
Received by editor(s): October 1, 2013
Received by editor(s) in revised form: July 16, 2014
Published electronically: December 3, 2015
Additional Notes: The first author was partially supported by a grant from TÜBITAK: 112T113
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society