Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The irreducible representations of the alternating group which remain irreducible in characteristic $ p$


Author: Matthew Fayers
Journal: Trans. Amer. Math. Soc. 368 (2016), 5807-5855
MSC (2010): Primary 20C30, 05E10, 20C20
DOI: https://doi.org/10.1090/tran/6531
Published electronically: December 3, 2015
MathSciNet review: 3458400
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ p$ be an odd prime, and $ \mathfrak{A}_n$ the alternating group of degree $ n$. We determine which ordinary irreducible representations of $ \mathfrak{A}_n$ remain irreducible in characteristic $ p$, verifying the author's conjecture from 2010. Given the preparatory work done in 2010, our task is to determine which self-conjugate partitions label Specht modules for the symmetric group in characteristic $ p$ having exactly two composition factors. This is accomplished through the use of the Robinson-Brundan-Kleshchev `$ i$-restriction' functors, together with known results on decomposition numbers for the symmetric group and additional results on the Mullineux map and homomorphisms between Specht modules.


References [Enhancements On Off] (What's this?)

  • [AKT] Susumu Ariki, Victor Kreiman, and Shunsuke Tsuchioka, On the tensor product of two basic representations of $ U_v(\widehat {\mathfrak{sl}}_e)$, Adv. Math. 218 (2008), no. 1, 28-86. MR 2409408 (2009g:17014), https://doi.org/10.1016/j.aim.2007.11.018
  • [BK] Jonathan Brundan and Alexander Kleshchev, Representation theory of symmetric groups and their double covers, Groups, combinatorics & geometry (Durham, 2001) World Sci. Publ., River Edge, NJ, 2003, pp. 31-53. MR 1994959 (2004i:20016), https://doi.org/10.1142/9789812564481_0003
  • [CP] R. W. Carter and M. T. J. Payne, On homomorphisms between Weyl modules and Specht modules, Math. Proc. Cambridge Philos. Soc. 87 (1980), no. 3, 419-425. MR 556922 (81h:20048), https://doi.org/10.1017/S0305004100056851
  • [CT] Joseph Chuang and Kai Meng Tan, Some canonical basis vectors in the basic $ U_q(\widehat {\mathfrak{s}\mathfrak{l}}_n)$-module, J. Algebra 248 (2002), no. 2, 765-779. MR 1882121 (2002k:20011), https://doi.org/10.1006/jabr.2001.9030
  • [DF] Craig J. Dodge and Matthew Fayers, Some new decomposable Specht modules, J. Algebra 357 (2012), 235-262. MR 2905253, https://doi.org/10.1016/j.jalgebra.2012.01.035
  • [F1] Matthew Fayers, Reducible Specht modules, J. Algebra 280 (2004), no. 2, 500-504. MR 2089249 (2005h:20019), https://doi.org/10.1016/j.jalgebra.2003.09.053
  • [F2] Matthew Fayers, Irreducible Specht modules for Hecke algebras of type $ {\bf A}$, Adv. Math. 193 (2005), no. 2, 438-452. MR 2137291 (2006e:20007), https://doi.org/10.1016/j.aim.2004.06.001
  • [F3] Matthew Fayers, On the irreducible representations of the alternating group which remain irreducible in characteristic $ p$, Represent. Theory 14 (2010), 601-626. MR 2685098 (2011h:20013), https://doi.org/10.1090/S1088-4165-2010-00390-8
  • [F4] Matthew Fayers, An algorithm for semistandardising homomorphisms, J. Algebra 364 (2012), 38-51. MR 2927046, https://doi.org/10.1016/j.jalgebra.2012.04.020
  • [FLM] Matthew Fayers, Sinéad Lyle, and Stuart Martin, $ p$-restriction of partitions and homomorphisms between Specht modules, J. Algebra 306 (2006), no. 1, 175-190. MR 2271577 (2007j:20012), https://doi.org/10.1016/j.jalgebra.2005.11.040
  • [FM] M. Fayers and S. Martin, Homomorphisms between Specht modules, Math. Z. 248 (2004), no. 2, 395-421. MR 2088935 (2005d:20021), https://doi.org/10.1007/s00209-004-0662-z
  • [G] James A. Green, Polynomial representations of $ {\rm GL}_{n}$, Lecture Notes in Mathematics, vol. 830, Springer-Verlag, Berlin-New York, 1980. MR 606556 (83j:20003)
  • [J1] G. D. James, On the decomposition matrices of the symmetric groups. II, J. Algebra 43 (1976), no. 1, 45-54. MR 0430050 (55 #3057b)
  • [J2] G. D. James, The representation theory of the symmetric groups, Lecture Notes in Mathematics, vol. 682, Springer, Berlin, 1978. MR 513828 (80g:20019)
  • [JM1] Gordon James and Andrew Mathas, Hecke algebras of type $ {\bf A}$ with $ q=-1$, J. Algebra 184 (1996), no. 1, 102-158. MR 1402572 (97h:20017), https://doi.org/10.1006/jabr.1996.0251
  • [JM2] Gordon James and Andrew Mathas, A $ q$-analogue of the Jantzen-Schaper theorem, Proc. London Math. Soc. (3) 74 (1997), no. 2, 241-274. MR 1425323 (97j:20013), https://doi.org/10.1112/S0024611597000099
  • [JM3] Gordon James and Andrew Mathas, The irreducible Specht modules in characteristic $ 2$, Bull. London Math. Soc. 31 (1999), no. 4, 457-462. MR 1687552 (2000f:20018), https://doi.org/10.1112/S0024609399005822
  • [KP] Alexander Kleshchev and Alexander Premet, The globally irreducible representations of symmetric groups, Proc. Amer. Math. Soc. 128 (2000), no. 3, 647-655. MR 1676332 (2000e:20025), https://doi.org/10.1090/S0002-9939-99-05418-0
  • [KLMW] V. Kreiman, V. Lakshmibai, P. Magyar, and J. Weyman, Standard bases for affine $ {\rm SL}(n)$-modules, Int. Math. Res. Not. 21 (2005), 1251-1276. MR 2146340 (2006c:17009), https://doi.org/10.1155/IMRN.2005.1251
  • [L1] Sinéad Lyle, Some reducible Specht modules, J. Algebra 269 (2003), no. 2, 536-543. MR 2015852 (2004h:20015), https://doi.org/10.1016/S0021-8693(03)00537-4
  • [L2] Sinéad Lyle, Some $ q$-analogues of the Carter-Payne theorem, J. Reine Angew. Math. 608 (2007), 93-121. MR 2339470 (2008f:20016), https://doi.org/10.1515/CRELLE.2007.054
  • [M] G. Mullineux, Bijections of $ p$-regular partitions and $ p$-modular irreducibles of the symmetric groups, J. London Math. Soc. (2) 20 (1979), no. 1, 60-66. MR 545202 (80j:20016), https://doi.org/10.1112/jlms/s2-20.1.60
  • [Ri] Matthew J. Richards, Some decomposition numbers for Hecke algebras of general linear groups, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 3, 383-402. MR 1357053 (97d:20009), https://doi.org/10.1017/S0305004100074296
  • [Ro1] G. de B. Robinson, Representation theory of the symmetric group, Mathematical Expositions, No. 12. University of Toronto Press, Toronto, 1961. MR 0125885 (23 #A3182)
  • [S] Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin, Cambridge University Press, Cambridge, 1999. MR 1676282 (2000k:05026)
  • [T] W. Turner, Rock blocks, Mem. Amer. Math. Soc. 202 (2009), no. 947, viii+102. MR 2553536 (2011c:20021), https://doi.org/10.1090/S0065-9266-09-00562-6

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 20C30, 05E10, 20C20

Retrieve articles in all journals with MSC (2010): 20C30, 05E10, 20C20


Additional Information

Matthew Fayers
Affiliation: School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
Email: m.fayers@qmul.ac.uk

DOI: https://doi.org/10.1090/tran/6531
Received by editor(s): November 27, 2013
Received by editor(s) in revised form: July 25, 2014
Published electronically: December 3, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society