Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Local maps and the representation theory of operator algebras


Author: Elias G. Katsoulis
Journal: Trans. Amer. Math. Soc. 368 (2016), 5377-5397
MSC (2010): Primary 46L08, 47B49, 47L40, 47L65
DOI: https://doi.org/10.1090/tran6674
Published electronically: December 14, 2015
MathSciNet review: 3458384
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using representation theory techniques we prove that various
spaces of derivations or one-sided multipliers over certain operator algebras are reflexive. A sample result: any bounded local derivation (local left multiplier) on an automorphic semicrossed product $ C(\Omega ) \times _{\sigma } \mathbb{Z}^{+}$ is a derivation (resp. left multiplier). In the process we obtain various results of independent interest. In particular, we show that the finite dimensional nest representations of the tensor algebra of a topological graph separate points.


References [Enhancements On Off] (What's this?)

  • [1] William B. Arveson, Operator algebras and measure preserving automorphisms, Acta Math. 118 (1967), 95-109. MR 0210866 (35 #1751)
  • [2] Matej Brešar, Characterizing homomorphisms, derivations and multipliers in rings with idempotents, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), no. 1, 9-21. MR 2359769 (2008j:16097), https://doi.org/10.1017/S0308210504001088
  • [3] Matej Brešar and Peter Šemrl, Mappings which preserve idempotents, local automorphisms, and local derivations, Canad. J. Math. 45 (1993), no. 3, 483-496. MR 1222512 (94k:47054), https://doi.org/10.4153/CJM-1993-025-4
  • [4] Nathan Brownlowe and Iain Raeburn, Exel's crossed product and relative Cuntz-Pimsner algebras, Math. Proc. Cambridge Philos. Soc. 141 (2006), no. 3, 497-508. MR 2281412 (2007i:46067), https://doi.org/10.1017/S030500410600956X
  • [5] Nathan Brownlowe, Iain Raeburn, and Sean T. Vittadello, Exel's crossed product for non-unital $ C^*$-algebras, Math. Proc. Cambridge Philos. Soc. 149 (2010), no. 3, 423-444. MR 2726727 (2011k:46092), https://doi.org/10.1017/S030500411000037X
  • [6] Toke Meier Carlsen and Sergei Silvestrov, On the Exel crossed product of topological covering maps, Acta Appl. Math. 108 (2009), no. 3, 573-583. MR 2563500 (2010k:46071), https://doi.org/10.1007/s10440-008-9372-6
  • [7] Man Duen Choi, The full $ C^{\ast } $-algebra of the free group on two generators, Pacific J. Math. 87 (1980), no. 1, 41-48. MR 590864 (82b:46069)
  • [8] Randall L. Crist, Local derivations on operator algebras, J. Funct. Anal. 135 (1996), no. 1, 76-92. MR 1367625 (96m:46128), https://doi.org/10.1006/jfan.1996.0004
  • [9] Kenneth R. Davidson and Elias G. Katsoulis, Operator algebras for multivariable dynamics, Mem. Amer. Math. Soc. 209 (2011), no. 982, viii+53. MR 2752983 (2012c:47194), https://doi.org/10.1090/S0065-9266-10-00615-0
  • [10] Kenneth R. Davidson and Elias G. Katsoulis, Isomorphisms between topological conjugacy algebras, J. Reine Angew. Math. 621 (2008), 29-51. MR 2431249 (2010b:47226), https://doi.org/10.1515/CRELLE.2008.057
  • [11] Kenneth R. Davidson and Elias Katsoulis, Nest representations of directed graph algebras, Proc. London Math. Soc. (3) 92 (2006), no. 3, 762-790. MR 2223543 (2009m:47202), https://doi.org/10.1017/S0024611505015662
  • [12] Benton L. Duncan, Derivations for a class of matrix function algebras, Linear Algebra Appl. 422 (2007), no. 1, 67-76. MR 2298996 (2008c:46069), https://doi.org/10.1016/j.laa.2006.09.006
  • [13] Ruy Exel, Circle actions on $ C^*$-algebras, partial automorphisms, and a generalized Pimsner-Voiculescu exact sequence, J. Funct. Anal. 122 (1994), no. 2, 361-401. MR 1276163 (95g:46122), https://doi.org/10.1006/jfan.1994.1073
  • [14] R. Exel and A. Vershik, $ C^\ast $-algebras of irreversible dynamical systems, Canad. J. Math. 58 (2006), no. 1, 39-63. MR 2195591 (2007d:46058), https://doi.org/10.4153/CJM-2006-003-x
  • [15] Neal J. Fowler and Iain Raeburn, The Toeplitz algebra of a Hilbert bimodule, Indiana Univ. Math. J. 48 (1999), no. 1, 155-181. MR 1722197 (2001b:46093), https://doi.org/10.1512/iumj.1999.48.1639
  • [16] B. E. Johnson, Local derivations on $ C^*$-algebras are derivations, Trans. Amer. Math. Soc. 353 (2001), no. 1, 313-325 (electronic). MR 1783788 (2002c:46132), https://doi.org/10.1090/S0002-9947-00-02688-X
  • [17] B. E. Johnson, Centralisers and operators reduced by maximal ideals, J. London Math. Soc. 43 (1968), 231-233. MR 0223890 (36 #6937)
  • [18] The Hadwin Lunch Bunch, Local multiplications on algebras spanned by idempotents, Linear and Multilinear Algebra 37 (1994), no. 4, 259-263. MR 1310968 (96f:47070), https://doi.org/10.1080/03081089408818328
  • [19] Don Hadwin and Jeanne Wald Kerr, Local multiplications on algebras, J. Pure Appl. Algebra 115 (1997), no. 3, 231-239. MR 1431834 (98b:16006), https://doi.org/10.1016/S0022-4049(96)00013-8
  • [20] Don Hadwin and Jiankui Li, Local derivations and local automorphisms on some algebras, J. Operator Theory 60 (2008), no. 1, 29-44. MR 2415555 (2009e:47056)
  • [21] Don Hadwin and Jiankui Li, Local derivations and local automorphisms, J. Math. Anal. Appl. 290 (2004), no. 2, 702-714. MR 2033052 (2004j:47071), https://doi.org/10.1016/j.jmaa.2003.10.015
  • [22] Richard V. Kadison, Local derivations, J. Algebra 130 (1990), no. 2, 494-509. MR 1051316 (91f:46092), https://doi.org/10.1016/0021-8693(90)90095-6
  • [23] E. G. Katsoulis, The reflexive closure of the adjointable operators, Illinois J. Math. 58 (2014), no. 2, 359-367. MR 3367652
  • [24] Elias G. Katsoulis and David W. Kribs, Tensor algebras of $ C^*$-correspondences and their $ C^*$-envelopes, J. Funct. Anal. 234 (2006), no. 1, 226-233. MR 2214146 (2007a:46061), https://doi.org/10.1016/j.jfa.2005.12.013
  • [25] Elias Katsoulis and David W. Kribs, Isomorphisms of algebras associated with directed graphs, Math. Ann. 330 (2004), no. 4, 709-728. MR 2102309 (2005i:47114), https://doi.org/10.1007/s00208-004-0566-6
  • [26] Takeshi Katsura, A class of $ C^\ast $-algebras generalizing both graph algebras and homeomorphism $ C^\ast $-algebras. I. Fundamental results, Trans. Amer. Math. Soc. 356 (2004), no. 11, 4287-4322 (electronic). MR 2067120 (2005b:46119), https://doi.org/10.1090/S0002-9947-04-03636-0
  • [27] Takeshi Katsura, On $ C^*$-algebras associated with $ C^*$-correspondences, J. Funct. Anal. 217 (2004), no. 2, 366-401. MR 2102572 (2005e:46099), https://doi.org/10.1016/j.jfa.2004.03.010
  • [28] David W. Kribs and Stephen C. Power, Free semigroupoid algebras, J. Ramanujan Math. Soc. 19 (2004), no. 2, 117-159. MR 2076898 (2005c:47106)
  • [29] David R. Larson, Reflexivity, algebraic reflexivity and linear interpolation, Amer. J. Math. 110 (1988), no. 2, 283-299. MR 935008 (89d:47096), https://doi.org/10.2307/2374503
  • [30] David R. Larson and Ahmed R. Sourour, Local derivations and local automorphisms of $ {\mathcal {B}}(X)$, Operator theory: operator algebras and applications, Part 2 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 187-194. MR 1077437 (91k:47106), https://doi.org/10.1090/pspum/051.2/1077437
  • [31] Jiankui Li and Zhidong Pan, Annihilator-preserving maps, multipliers, and derivations, Linear Algebra Appl. 432 (2010), no. 1, 5-13. MR 2566454 (2010j:47055), https://doi.org/10.1016/j.laa.2009.06.002
  • [32] Paul S. Muhly and Baruch Solel, Tensor algebras over $ C^*$-correspondences: representations, dilations, and $ C^*$-envelopes, J. Funct. Anal. 158 (1998), no. 2, 389-457. MR 1648483 (99j:46066), https://doi.org/10.1006/jfan.1998.3294
  • [33] Theodore W. Palmer, Banach algebras and the general theory of $ ^*$-algebras. Vol. I, Encyclopedia of Mathematics and its Applications, vol. 49, Cambridge University Press, Cambridge, 1994. Algebras and Banach algebras. MR 1270014 (95c:46002)
  • [34] Justin Peters, Semicrossed products of $ C^\ast $-algebras, J. Funct. Anal. 59 (1984), no. 3, 498-534. MR 769379 (86e:46063), https://doi.org/10.1016/0022-1236(84)90063-6
  • [35] Gelu Popescu, Non-commutative disc algebras and their representations, Proc. Amer. Math. Soc. 124 (1996), no. 7, 2137-2148. MR 1343719 (96k:47077), https://doi.org/10.1090/S0002-9939-96-03514-9
  • [36] Ebrahim Samei, Approximately local derivations, J. London Math. Soc. (2) 71 (2005), no. 3, 759-778. MR 2132382 (2006a:46061), https://doi.org/10.1112/S0024610705006496

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 46L08, 47B49, 47L40, 47L65

Retrieve articles in all journals with MSC (2010): 46L08, 47B49, 47L40, 47L65


Additional Information

Elias G. Katsoulis
Affiliation: Department of Mathematics, East Carolina University, Greenville, North Carolina 27858
Email: katsoulise@ecu.edu

DOI: https://doi.org/10.1090/tran6674
Keywords: Local derivation, local multiplier, reflexivity, topological graph, tensor algebra, $\mathrm{C}^*$-correspondence, Cuntz-Pimsner $\mathrm{C}^*$-algebra.
Received by editor(s): June 11, 2014
Received by editor(s) in revised form: June 19, 2014
Published electronically: December 14, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society