Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

   
 
 

 

The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases


Authors: Mathieu Lewin, Phan Thành Nam and Nicolas Rougerie
Journal: Trans. Amer. Math. Soc. 368 (2016), 6131-6157
MSC (2010): Primary 35Q40
DOI: https://doi.org/10.1090/tran/6537
Published electronically: October 5, 2015
MathSciNet review: 3461029
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the ground state of a trapped Bose gas, starting from the full many-body Schrödinger Hamiltonian, and derive the non-linear Schrödinger energy functional in the limit of a large particle number, when the interaction potential converges slowly to a Dirac delta function. Our method is based on quantitative estimates on the discrepancy between the full many-body energy and its mean-field approximation using Hartree states. These are proved using finite dimensional localization and a quantitative version of the quantum de Finetti theorem. Our approach covers the case of attractive interactions in the regime of stability. In particular, our main new result is a derivation of the 2D attractive non-linear Schrödinger ground state.


References [Enhancements On Off] (What's this?)

  • [1] Riccardo Adami, Claude Bardos, François Golse, and Alessandro Teta, Towards a rigorous derivation of the cubic NLSE in dimension one, Asymptot. Anal. 40 (2004), no. 2, 93-108. MR 2104130 (2005g:35263)
  • [2] Amandine Aftalion, Robert L. Jerrard, and Jimena Royo-Letelier, Non-existence of vortices in the small density region of a condensate, J. Funct. Anal. 260 (2011), no. 8, 2387-2406. MR 2772375 (2012b:35333), https://doi.org/10.1016/j.jfa.2010.12.003
  • [3] Amandine Aftalion, Vortices in Bose-Einstein condensates, Progress in Nonlinear Differential Equations and their Applications, 67, Birkhäuser Boston, Inc., Boston, MA, 2006. MR 2228356 (2007g:82078)
  • [4] Zied Ammari and Francis Nier, Mean field limit for bosons and infinite dimensional phase-space analysis, Ann. Henri Poincaré 9 (2008), no. 8, 1503-1574. MR 2465733 (2009m:81118), https://doi.org/10.1007/s00023-008-0393-5
  • [5] W. H. Aschbacher, J. Fröhlich, G. M. Graf, K. Schnee, and M. Troyer, Symmetry breaking regime in the nonlinear Hartree equation, J. Math. Phys. 43 (2002), no. 8, 3879-3891. MR 1915631 (2004c:81070), https://doi.org/10.1063/1.1488673
  • [6] Claude Bardos, François Golse, and Norbert J. Mauser, Weak coupling limit of the $ N$-particle Schrödinger equation, Methods Appl. Anal. 7 (2000), no. 2, 275-293. Cathleen Morawetz: a great mathematician. MR 1869286 (2003c:81215)
  • [7] R. Benguria and E. H. Lieb, Proof of the Stability of Highly Negative Ions in the Absence of the Pauli Principle, Phys. Rev. Lett. 50 (1983), 1771-1774.
  • [8] J.-B. Bru, M. Correggi, P. Pickl, and J. Yngvason, The TF limit for rapidly rotating Bose gases in anharmonic traps, Comm. Math. Phys. 280 (2008), no. 2, 517-544. MR 2395481 (2009d:82085), https://doi.org/10.1007/s00220-008-0455-z
  • [9] Eric A. Carlen, Rupert L. Frank, and Elliott H. Lieb, Stability estimates for the lowest eigenvalue of a Schrödinger operator, Geom. Funct. Anal. 24 (2014), no. 1, 63-84. MR 3177378, https://doi.org/10.1007/s00039-014-0253-z
  • [10] X. Chen and J. Holmer, Focusing Quantum Many-body Dynamics: The Rigorous Derivation of the 1D Focusing Cubic Nonlinear Schrödinger Equation, arXiv:1308.3895.
  • [11] Giulio Chiribella, On quantum estimation, quantum cloning and finite quantum de Finetti theorems, Theory of quantum computation, communication, and cryptography, Lecture Notes in Comput. Sci., vol. 6519, Springer, Berlin, 2011, pp. 9-25. MR 2788174 (2012i:81019), https://doi.org/10.1007/978-3-642-18073-6_2
  • [12] Matthias Christandl, Robert König, Graeme Mitchison, and Renato Renner, One-and-a-half quantum de Finetti theorems, Comm. Math. Phys. 273 (2007), no. 2, 473-498. MR 2318315 (2008m:81100), https://doi.org/10.1007/s00220-007-0189-3
  • [13] J. M. Combes, R. Schrader, and R. Seiler, Classical bounds and limits for energy distributions of Hamilton operators in electromagnetic fields, Ann Physics 111 (1978), no. 1, 1-18. MR 0489509 (58 #8930)
  • [14] N. R. Cooper, Rapidly rotating atomic gases, Advances in Physics 57 (2008), 539-616.
  • [15] M. Correggi, F. Pinsker, N. Rougerie, and J. Yngvason, Critical rotational speeds in the Gross-Pitaevskii theory on a disc with Dirichlet boundary conditions, J. Stat. Phys. 143 (2011), no. 2, 261-305. MR 2793166 (2012d:82090), https://doi.org/10.1007/s10955-011-0182-2
  • [16] M. Correggi, F. Pinsker, N. Rougerie, and J. Yngvason, Critical rotational speeds for superfluids in homogeneous traps, J. Math. Phys. 53 (2012), no. 9, 095203, 45. MR 2905785, https://doi.org/10.1063/1.3697418
  • [17] M. Correggi, T. Rindler-Daller, and J. Yngvason, Rapidly rotating Bose-Einstein condensates in strongly anharmonic traps, J. Math. Phys. 48 (2007), no. 4, 042104, 30. MR 2319884 (2008k:82077), https://doi.org/10.1063/1.2712421
  • [18] J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Artificial gauge potentials for neutral atoms, Rev. Mod. Phys. 83 (2011), 1523.
  • [19] László Erdős, Benjamin Schlein, and Horng-Tzer Yau, Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems, Invent. Math. 167 (2007), no. 3, 515-614. MR 2276262 (2007m:81258), https://doi.org/10.1007/s00222-006-0022-1
  • [20] László Erdős, Benjamin Schlein, and Horng-Tzer Yau, Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential, J. Amer. Math. Soc. 22 (2009), no. 4, 1099-1156. MR 2525781 (2010g:82041), https://doi.org/10.1090/S0894-0347-09-00635-3
  • [21] M. Fannes, H. Spohn, and A. Verbeure, Equilibrium states for mean field models, J. Math. Phys. 21 (1980), no. 2, 355-358. MR 558480 (81a:82015), https://doi.org/10.1063/1.524422
  • [22] M. Fannes and C. Vandenplas, Finite size mean-field models, J. Phys. A 39 (2006), no. 45, 13843-13860. MR 2275904 (2007k:81019), https://doi.org/10.1088/0305-4470/39/45/001
  • [23] A.L. Fetter, Rotating trapped Bose-Einstein condensates, Rev. Mod. Phys. 81 (2009), 647.
  • [24] Rupert L. Frank, Ground states of semi-linear pde, Lecture notes from the ``Summerschool on Current Topics in Mathematical Physics'', CIRM Marseille, Sept. 2013.
  • [25] Jürg Fröhlich, Antti Knowles, and Simon Schwarz, On the mean-field limit of bosons with Coulomb two-body interaction, Comm. Math. Phys. 288 (2009), no. 3, 1023-1059. MR 2504864 (2010b:82039), https://doi.org/10.1007/s00220-009-0754-z
  • [26] Philip Grech and Robert Seiringer, The excitation spectrum for weakly interacting bosons in a trap, Comm. Math. Phys. 322 (2013), no. 2, 559-591. MR 3077925, https://doi.org/10.1007/s00220-013-1736-8
  • [27] Yujin Guo and Robert Seiringer, On the mass concentration for Bose-Einstein condensates with attractive interactions, Lett. Math. Phys. 104 (2014), no. 2, 141-156. MR 3152151, https://doi.org/10.1007/s11005-013-0667-9
  • [28] A. Harrow, The church of the symmetric subspace, preprint, arXiv:1308.6595.
  • [29] R. L. Hudson and G. R. Moody, Locally normal symmetric states and an analogue of de Finetti's theorem, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 33 (1975/76), no. 4, 343-351. MR 0397421 (53 #1280)
  • [30] Mathieu Lewin, Geometric methods for nonlinear many-body quantum systems, J. Funct. Anal. 260 (2011), no. 12, 3535-3595. MR 2781970 (2012d:81101), https://doi.org/10.1016/j.jfa.2010.11.017
  • [31] Mathieu Lewin, Phan Thành Nam, and Nicolas Rougerie, Remarks on the quantum de Finetti theorem for bosonic systems, Appl. Math. Res. Express. AMRX 1 (2015), 48-63. MR 3335056, https://doi.org/10.1093/amrx/abu006
  • [32] Mathieu Lewin, Phan Thành Nam, and Nicolas Rougerie, Derivation of Hartree's theory for generic mean-field Bose systems, Adv. Math. 254 (2014), 570-621. MR 3161107, https://doi.org/10.1016/j.aim.2013.12.010
  • [33] Mathieu Lewin, Phan Thành Nam, Sylvia Serfaty, and Jan Philip Solovej, Bogoliubov spectrum of interacting Bose gases, Comm. Pure Appl. Math. 68 (2015), no. 3, 413-471. MR 3310520, https://doi.org/10.1002/cpa.21519
  • [34] Elliott H. Lieb and Werner Liniger, Exact analysis of an interacting Bose gas. I. The general solution and the ground state, Phys. Rev. (2) 130 (1963), 1605-1616. MR 0156630 (27 #6551)
  • [35] Elliott H. Lieb and Robert Seiringer, Derivation of the Gross-Pitaevskii equation for rotating Bose gases, Comm. Math. Phys. 264 (2006), no. 2, 505-537. MR 2215615 (2007h:82008), https://doi.org/10.1007/s00220-006-1524-9
  • [36] Elliott H. Lieb and Robert Seiringer, The Stability of Matter in Quantum Mechanics, Cambridge Univ. Press, 2010.
  • [37] Elliott H. Lieb, Robert Seiringer, Jan Philip Solovej, and Jakob Yngvason, The mathematics of the Bose gas and its condensation, Oberwolfach Seminars, vol. 34, Birkhäuser Verlag, Basel, 2005. MR 2143817 (2006e:82001)
  • [38] Elliott H. Lieb, Robert Seiringer, and Jakob Yngvason, Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional, Phys. Rev. A 61 (2000), no. 4, 043602.
  • [39] Elliott H. Lieb, Robert Seiringer, and Jakob Yngvason, A rigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional Bose gas, Comm. Math. Phys. 224 (2001), no. 1, 17-31. Dedicated to Joel L. Lebowitz. MR 1868990 (2003a:82008), https://doi.org/10.1007/s002200100533
  • [40] Elliott H. Lieb, Robert Seiringer, and Jakob Yngvason, Justification of $ c$-Number Substitutions in Bosonic Hamiltonians, Phys. Rev. Lett. 94 (2005), 080401.
  • [41] Elliott H. Lieb and Horng-Tzer Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Comm. Math. Phys. 112 (1987), no. 1, 147-174. MR 904142 (89b:82014)
  • [42] Elliott H. Lieb and Jakob Yngvason, Ground state energy of the low density Bose gas, Phys. Rev. Lett. 80 (1998), no. 12, 2504-2507, DOI 10.1103/PhysRevLett.80.2504.
  • [43] Masaya Maeda, On the symmetry of the ground states of nonlinear Schrödinger equation with potential, Adv. Nonlinear Stud. 10 (2010), no. 4, 895-925. MR 2683688 (2012a:49073)
  • [44] C. Pethick and H. Smith, Bose-Einstein condensation of dilute gases, Cambridge University Press, 2001.
  • [45] Peter Pickl, Derivation of the time dependent Gross-Pitaevskii equation with external fields, Rev. Math. Phys. 27 (2015), no. 1, 1550003, 45. MR 3317556, https://doi.org/10.1142/S0129055X15500038
  • [46] Peter Pickl, Derivation of the time dependent Gross-Pitaevskii equation without positivity condition on the interaction, J. Stat. Phys. 140 (2010), no. 1, 76-89. MR 2651439 (2011h:82049), https://doi.org/10.1007/s10955-010-9981-0
  • [47] Peter Pickl, A simple derivation of mean field limits for quantum systems, Lett. Math. Phys. 97 (2011), no. 2, 151-164. MR 2821235 (2012i:81299), https://doi.org/10.1007/s11005-011-0470-4
  • [48] Lev Pitaevskii and Sandro Stringari, Bose-Einstein condensation, International Series of Monographs on Physics, vol. 116, The Clarendon Press, Oxford University Press, Oxford, 2003. MR 2012737 (2004i:82038)
  • [49] G. A. Raggio and R. F. Werner, Quantum statistical mechanics of general mean field systems, Helv. Phys. Acta 62 (1989), no. 8, 980-1003. MR 1034151 (90m:82012)
  • [50] Igor Rodnianski and Benjamin Schlein, Quantum fluctuations and rate of convergence towards mean field dynamics, Comm. Math. Phys. 291 (2009), no. 1, 31-61. MR 2530155 (2011d:82059), https://doi.org/10.1007/s00220-009-0867-4
  • [51] David Ruelle, Statistical mechanics, World Scientific Publishing Co., Inc., River Edge, NJ; Imperial College Press, London, 1999. Rigorous results; Reprint of the 1989 edition. MR 1747792 (2002f:82001)
  • [52] Robert Seiringer, Gross-Pitaevskii theory of the rotating Bose gas, Comm. Math. Phys. 229 (2002), no. 3, 491-509. MR 1924365 (2003i:82058), https://doi.org/10.1007/s00220-002-0695-2
  • [53] Robert Seiringer, The excitation spectrum for weakly interacting bosons, Comm. Math. Phys. 306 (2011), no. 2, 565-578. MR 2824481 (2012g:82009), https://doi.org/10.1007/s00220-011-1261-6
  • [54] Robert Seiringer, Jakob Yngvason, and Valentin A Zagrebnov, Disordered Bose-Einstein condensates with interaction in one dimension, J. Stat. Mech. 2012 (2012), no. 11, P11007.
  • [55] Barry Simon, Functional integration and quantum physics, 2nd ed., AMS Chelsea Publishing, Providence, RI, 2005. MR 2105995 (2005f:81003)
  • [56] A.V. Skorokhod, Integration in Hilbert space, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, 1974.
  • [57] Erling Størmer, Symmetric states of infinite tensor products of $ C^{\ast } $-algebras, J. Functional Analysis 3 (1969), 48-68. MR 0241992 (39 #3327)
  • [58] Michael I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1982/83), no. 4, 567-576. MR 691044 (84d:35140)
  • [59] R. F. Werner, Large deviations and mean-field quantum systems, Quantum probability & related topics, QP-PQ, VII, World Sci. Publ., River Edge, NJ, 1992, pp. 349-381. MR 1186674 (94c:82008)
  • [60] Jian Zhang, Stability of attractive Bose-Einstein condensates, J. Statist. Phys. 101 (2000), no. 3-4, 731-746. MR 1804895 (2002b:82039), https://doi.org/10.1023/A:1026437923987

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35Q40

Retrieve articles in all journals with MSC (2010): 35Q40


Additional Information

Mathieu Lewin
Affiliation: CNRS and Laboratoire de Mathématiques (UMR 8088), Université de Cergy-Pontoise, F-95000 Cergy-Pontoise, France
Email: mathieu.lewin@math.cnrs.fr

Phan Thành Nam
Affiliation: IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
Email: pnam@ist.ac.at

Nicolas Rougerie
Affiliation: CNRS and Université Grenoble Alpes, LPMMC (UMR 5493), B.P. 166, F-38 042 Grenoble, France
Email: nicolas.rougerie@grenoble.cnrs.fr

DOI: https://doi.org/10.1090/tran/6537
Received by editor(s): May 18, 2014
Received by editor(s) in revised form: July 31, 2014
Published electronically: October 5, 2015
Article copyright: © Copyright 2015 by the authors

American Mathematical Society