Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ 1$-complete semiholomorphic foliations


Authors: Samuele Mongodi and Giuseppe Tomassini
Journal: Trans. Amer. Math. Soc. 368 (2016), 6271-6292
MSC (2010): Primary 32C15, 32V10, 57R30
DOI: https://doi.org/10.1090/tran/6543
Published electronically: December 9, 2015
MathSciNet review: 3461034
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A semiholomorphic foliation of type $ (n,d)$ is a differentiable real manifold $ X$ of dimension $ 2n+d$, foliated by complex leaves of complex dimension $ n$. In the present work, we introduce an appropriate notion of pseudoconvexity (and consequently, $ q$-completeness) for such spaces, given by the interplay of the usual pseudoconvexity along the leaves, and the positivity of the transversal bundle. For $ 1$-complete real analytic semiholomorphic foliations, we obtain a vanishing theorem for the CR cohomology, which we use to show an extension result for CR functions on Levi flat hypersurfaces and an embedding theorem in $ \mathbb{C}^N$. In the compact case, we introduce a notion of weak positivity for the transversal bundle, which allows us to construct a real analytic embedding in $ \mathbb{CP}^N$.


References [Enhancements On Off] (What's this?)

  • [1] Aldo Andreotti and Theodore Frankel, The Lefschetz theorem on hyperplane sections, Ann. of Math. (2) 69 (1959), 713-717. MR 0177422 (31 #1685)
  • [2] Aldo Andreotti and Hans Grauert, Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259 (French). MR 0150342 (27 #343)
  • [3] A. Andreotti and C. D. Hill, E. E. Levi convexity and the Hans Lewy problem. I. Reduction to vanishing theorems, Ann. Scuola Norm. Sup. Pisa (3) 26 (1972), 325-363.
  • [4] Aldo Andreotti and Raghavan Narasimhan, Oka's Heftungslemma and the Levi problem for complex spaces, Trans. Amer. Math. Soc. 111 (1964), 345-366. MR 0159961 (28 #3176)
  • [5] Aziz El Kacimi Alaoui, The $ \overline \partial $ operator along the leaves and Guichard's theorem for a complex simple foliation, Math. Ann. 347 (2010), no. 4, 885-897. MR 2658147 (2011m:32071), https://doi.org/10.1007/s00208-009-0459-9
  • [6] Aziz El Kacimi Alaoui and Jihène Slimène, Cohomologie de Dolbeault le long des feuilles de certains feuilletages complexes, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 2, 727-757 (French, with English and French summaries). MR 2667792 (2012h:32012)
  • [7] F. Forstnerič and C. Laurent-Thiébaut, Stein compacts in Levi-flat hypersurfaces, Trans. Amer. Math. Soc. 360 (2008), no. 1, 307-329 (electronic).
  • [8] Michael Freeman, Tangential Cauchy-Riemann equations and uniform approximation, Pacific J. Math. 33 (1970), 101-108. MR 0264117 (41 #8713)
  • [9] Roger Gay and Ahmed Sebbar, Division et extension dans l'algèbre $ A^\infty (\Omega )$ d'un ouvert pseudo-convexe à bord lisse de $ {\bf C}^n$, Math. Z. 189 (1985), no. 3, 421-447 (French). MR 783566 (86e:32020), https://doi.org/10.1007/BF01164163
  • [10] Giuliana Gigante and Giuseppe Tomassini, Foliations with complex leaves, Differential Geom. Appl. 5 (1995), no. 1, 33-49. MR 1319934 (96b:32024), https://doi.org/10.1016/0926-2245(95)00004-N
  • [11] M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts in Mathematics, Vol. 14. Springer-Verlag, New York-Heidelberg, 1973. MR 0341518 (49 #6269)
  • [12] Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR 1045639 (91a:32001)
  • [13] Samuele Mongodi and Giuseppe Tomassini, Transversally pseudoconvex semiholomorphic foliations, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26 (2015), no. 1, 23-36. MR 3345319, https://doi.org/10.4171/RLM/689
  • [14] J. J. Kohn, Global regularity for $ \bar \partial $ on weakly pseudo-convex manifolds, Trans. Amer. Math. Soc. 181 (1973), 273-292. MR 0344703 (49 #9442)
  • [15] Mauro Nacinovich, On boundary Hilbert differential complexes, Ann. Polon. Math. 46 (1985), 213-235. MR 841829 (88a:58184)
  • [16] Shigeo Nakano, Vanishing theorems for weakly $ 1$-complete manifolds, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 169-179. MR 0367313 (51 #3555)
  • [17] L. Nirenberg, A proof of the Malgrange preparation theorem, Proceedings of Liverpool Singularities--Symposium, I (1969/70), Lecture Notes in Mathematics, Vol. 192, Springer, Berlin, 1971, pp. 97-105. MR 0412460 (54 #586)
  • [18] C. Rea, Levi-flat submanifolds and holomorphic extension of foliations, Ann. Scuola Norm. Sup. Pisa (3) 26 (1972), 665-681. MR 0425158 (54 #13115)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 32C15, 32V10, 57R30

Retrieve articles in all journals with MSC (2010): 32C15, 32V10, 57R30


Additional Information

Samuele Mongodi
Affiliation: Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, I-00133 Roma, Italy
Email: mongodi@mat.uniroma2.it

Giuseppe Tomassini
Affiliation: Scuola Normale Superiore, Piazza dei Cavalieri, 7, I-56126 Pisa, Italy
Email: g.tomassini@sns.it

DOI: https://doi.org/10.1090/tran/6543
Keywords: Semiholomorphic foliations, CR geometry, complex spaces
Received by editor(s): April 14, 2014
Received by editor(s) in revised form: August 12, 2014
Published electronically: December 9, 2015
Additional Notes: The first author was supported by the ERC grant HEVO - Holomorphic Evolution Equations n. 277691.
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society