Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Topological dynamics of automorphism groups, ultrafilter combinatorics, and the Generic Point Problem


Author: Andy Zucker
Journal: Trans. Amer. Math. Soc. 368 (2016), 6715-6740
MSC (2010): Primary 37B05; Secondary 03C15, 03E15, 05D10, 22F50, 54D35, 54D80, 54H20
DOI: https://doi.org/10.1090/tran6685
Published electronically: November 16, 2015
MathSciNet review: 3461049
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For $ G$ a closed subgroup of $ S_{\infty }$, we provide a precise combinatorial characterization of when the universal minimal flow $ M(G)$ is metrizable. In particular, each such instance fits into the framework of metrizable flows developed by Kechris, Pestov, and Todorčević and by Nguyen Van Thé; as a consequence, each $ G$ with metrizable universal minimal flow has the generic point property, i.e. every minimal $ G$-flow has a point whose orbit is comeager. This solves the Generic Point Problem raised by Angel, Kechris, and Lyons for closed subgroups of $ S_\infty $.


References [Enhancements On Off] (What's this?)

  • [A] Joseph Auslander, Minimal flows and their extensions, Notas de Matemática [Mathematical Notes], 122, North-Holland Mathematics Studies, vol. 153, North-Holland Publishing Co., Amsterdam, 1988. MR 956049 (89m:54050)
  • [B] Dana Bartošová, Universal minimal flows of groups of automorphisms of uncountable structures, Canad. Math. Bull. 56 (2013), no. 4, 709-722. MR 3121680, https://doi.org/10.4153/CMB-2012-023-4
  • [AKL] Omer Angel, Alexander S. Kechris, and Russell Lyons, Random orderings and unique ergodicity of automorphism groups, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 10, 2059-2095. MR 3274785, https://doi.org/10.4171/JEMS/483
  • [EEN] David B. Ellis, Robert Ellis, and Mahesh Nerurkar, The topological dynamics of semigroup actions, Trans. Amer. Math. Soc. 353 (2001), no. 4, 1279-1320 (electronic). MR 1806740 (2001m:54041), https://doi.org/10.1090/S0002-9947-00-02704-5
  • [F] Roland Fraïssé, Sur l'extension aux relations de quelques propriétés des ordres, Ann. Sci. Ecole Norm. Sup. (3) 71 (1954), 363-388 (French). MR 0069239 (16,1006b)
  • [HS] Neil Hindman and Dona Strauss, Algebra in the Stone-Čech compactification, Theory and applications; Second revised and extended edition [of MR1642231], de Gruyter Textbook, Walter de Gruyter & Co., Berlin, 2012. MR 2893605
  • [Ho] Wilfrid Hodges, Model theory, Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge University Press, Cambridge, 1993. MR 1221741 (94e:03002)
  • [K] Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597 (96e:03057)
  • [KPT] A. S. Kechris, V. G. Pestov, and S. Todorčević, Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups, Geom. Funct. Anal. 15 (2005), no. 1, 106-189. MR 2140630 (2007j:37013), https://doi.org/10.1007/s00039-005-0503-1
  • [MNT] J. Melleray, L. Nguyen Van Thé, and T.Tsankov, Polish Groups with Metrizable Universal Minimal Flows, preprint (2014).
  • [MT] J. Melleray and T. Tsankov, Extremely Amenable groups via Continuous Logic (2011).
  • [MP] Moritz Müller and András Pongrácz, Topological dynamics of unordered Ramsey structures, Fund. Math. 230 (2015), no. 1, 77-98. MR 3332283, https://doi.org/10.4064/fm230-1-3
  • [NR] Jaroslav Nešetřil and Vojtěch Rödl, Partitions of finite relational and set systems, J. Combinatorial Theory Ser. A 22 (1977), no. 3, 289-312. MR 0437351 (55 #10283)
  • [NVT] L. Nguyen Van Thé, More on the Kechris-Pestov-Todorcevic correspondence: precompact expansions, Fund. Math. 222 (2013), no. 1, 19-47. MR 3080786, https://doi.org/10.4064/fm222-1-2
  • [P] Vladimir G. Pestov, On free actions, minimal flows, and a problem by Ellis, Trans. Amer. Math. Soc. 350 (1998), no. 10, 4149-4165. MR 1608494 (99b:54069), https://doi.org/10.1090/S0002-9947-98-02329-0
  • [Sa] Pierre Samuel, Ultrafilters and compactification of uniform spaces, Trans. Amer. Math. Soc. 64 (1948), 100-132. MR 0025717 (10,54a)
  • [Sch] Konstantinos Schoretsanitis, Fraisse theory for metric structures, ProQuest LLC, Ann Arbor, MI, 2007. Thesis (Ph.D.)-University of Illinois at Urbana-Champaign. MR 2711373
  • [U] Vladimir Uspenskij, Compactifications of topological groups, Proceedings of the Ninth Prague Topological Symposium (2001), Topol. Atlas, North Bay, ON, 2002, pp. 331-346. MR 1906851 (2003d:22002)
  • [W] Stephen Willard, General topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970. MR 0264581 (41 #9173)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 37B05, 03C15, 03E15, 05D10, 22F50, 54D35, 54D80, 54H20

Retrieve articles in all journals with MSC (2010): 37B05, 03C15, 03E15, 05D10, 22F50, 54D35, 54D80, 54H20


Additional Information

Andy Zucker
Affiliation: Department of Mathematics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
Email: zucker.andy@gmail.com

DOI: https://doi.org/10.1090/tran6685
Keywords: Fra\"{\i}ss\'e theory, Ramsey theory, universal minimal flow, greatest ambit, Generic Point Problem
Received by editor(s): July 4, 2014
Received by editor(s) in revised form: December 7, 2014, and February 8, 2015
Published electronically: November 16, 2015
Additional Notes: The author was partially supported by NSF Grant no. DGE 1252522.
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society