Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Rank-level duality of conformal blocks for odd orthogonal Lie algebras in genus 0


Author: Swarnava Mukhopadhyay
Journal: Trans. Amer. Math. Soc. 368 (2016), 6741-6778
MSC (2010): Primary 17B67, 14H60; Secondary 32G34, 81T40
DOI: https://doi.org/10.1090/tran6691
Published electronically: December 3, 2015
MathSciNet review: 3461050
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Classical invariants for representations of one Lie group can often be related to invariants of some other Lie group. Physics suggests that the right objects to consider for these questions are certain refinements of classical invariants known as conformal blocks. Conformal blocks appear in algebraic geometry as spaces of global sections of line bundles on moduli stacks of parabolic bundles on a smooth curve. Rank-level duality connects a conformal block associated to one Lie algebra to a conformal block for a different Lie algebra. In this paper, we prove a rank-level duality for $ \mathfrak{so}(2r+1)$ conformal blocks on the pointed projective line which was suggested by T. Nakanishi and A. Tsuchiya.


References [Enhancements On Off] (What's this?)

  • [1] Takeshi Abe, Strange duality for parabolic symplectic bundles on a pointed projective line, Int. Math. Res. Not. IMRN , posted on (2008), Art. ID rnn121, 47. MR 2448083 (2009k:14065), https://doi.org/10.1093/imrn/rnn121
  • [2] Prakash Belkale, Angela Gibney, and Swarnava Mukhopadhyay, Vanishing and identities of conformal blocks divisors, Algebr. Geom. 2 (2015), no. 1, 62-90. MR 3322198, https://doi.org/10.14231/AG-2015-004
  • [3] F. Alexander Bais and Peter G. Bouwknegt, A classification of subgroup truncations of the bosonic string, Nuclear Phys. B 279 (1987), no. 3-4, 561-570. MR 867243 (88e:81050), https://doi.org/10.1016/0550-3213(87)90010-1
  • [4] Arzu Boysal and Christian Pauly, Strange duality for Verlinde spaces of exceptional groups at level one, Int. Math. Res. Not. IMRN 4 (2010), 595-618. MR 2735730 (2012b:14016), https://doi.org/10.1093/imrn/rnp151
  • [5] Arnaud Beauville, Conformal blocks, fusion rules and the Verlinde formula, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993) Israel Math. Conf. Proc., vol. 9, Bar-Ilan Univ., Ramat Gan, 1996, pp. 75-96. MR 1360497 (97f:17025)
  • [6] Arnaud Beauville, Orthogonal bundles on curves and theta functions, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 5, 1405-1418 (English, with English and French summaries). MR 2273860 (2007g:14038)
  • [7] Prakash Belkale, Invariant theory of $ {\rm GL}(n)$ and intersection theory of Grassmannians, Int. Math. Res. Not. 69 (2004), 3709-3721. MR 2099498 (2005h:14117), https://doi.org/10.1155/S107379280414155X
  • [8] Prakash Belkale, The strange duality conjecture for generic curves, J. Amer. Math. Soc. 21 (2008), no. 1, 235-258 (electronic). MR 2350055 (2009c:14059), https://doi.org/10.1090/S0894-0347-07-00569-3
  • [9] Prakash Belkale, Strange duality and the Hitchin/WZW connection, J. Differential Geom. 82 (2009), no. 2, 445-465. MR 2520799 (2010j:14065)
  • [10] William Fulton and Joe Harris, Representation theory, A first course, Readings in Mathematics, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. MR 1153249 (93a:20069)
  • [11] Jürgen Fuchs and Christoph Schweigert, The action of outer automorphisms on bundles of chiral blocks, Comm. Math. Phys. 206 (1999), no. 3, 691-736. MR 1721887 (2001b:81049), https://doi.org/10.1007/s002200050841
  • [12] Najmuddin Fakhruddin, Chern classes of conformal blocks, Compact moduli spaces and vector bundles, Contemp. Math., vol. 564, Amer. Math. Soc., Providence, RI, 2012, pp. 145-176. MR 2894632, https://doi.org/10.1090/conm/564/11148
  • [13] Gerd Faltings, A proof for the Verlinde formula, J. Algebraic Geom. 3 (1994), no. 2, 347-374. MR 1257326 (95j:14013)
  • [14] I. B. Frenkel, Spinor representations of affine Lie algebras, Proc. Nat. Acad. Sci. U.S.A. 77 (1980), no. 11, 6303-6306. MR 592548 (81j:17011)
  • [15] Koji Hasegawa, Spin module versions of Weyl's reciprocity theorem for classical Kac-Moody Lie algebras--an application to branching rule duality, Publ. Res. Inst. Math. Sci. 25 (1989), no. 5, 741-828. MR 1031225 (91f:17023), https://doi.org/10.2977/prims/1195172705
  • [16] Victor G. Kac and Minoru Wakimoto, Modular and conformal invariance constraints in representation theory of affine algebras, Adv. in Math. 70 (1988), no. 2, 156-236. MR 954660 (89h:17036), https://doi.org/10.1016/0001-8708(88)90055-2
  • [17] Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219 (92k:17038)
  • [18] Yves Laszlo and Christoph Sorger, The line bundles on the moduli of parabolic $ G$-bundles over curves and their sections, Ann. Sci. École Norm. Sup. (4) 30 (1997), no. 4, 499-525 (English, with English and French summaries). MR 1456243 (98f:14007), https://doi.org/10.1016/S0012-9593(97)89929-6
  • [19] Peter Littelmann, A generalization of the Littlewood-Richardson rule, J. Algebra 130 (1990), no. 2, 328-368. MR 1051307 (91f:22023), https://doi.org/10.1016/0021-8693(90)90086-4
  • [20] Eduard Looijenga, From WZW models to modular functors, Handbook of moduli. Vol. II, Adv. Lect. Math. (ALM), vol. 25, Int. Press, Somerville, MA, 2013, pp. 427-466. MR 3184182
  • [21] Alina Marian and Dragos Oprea, The level-rank duality for non-abelian theta functions, Invent. Math. 168 (2007), no. 2, 225-247. MR 2289865 (2007k:14070), https://doi.org/10.1007/s00222-006-0032-z
  • [22] Alina Marian and Dragos Oprea, A tour of theta dualities on moduli spaces of sheaves, Curves and abelian varieties, Contemp. Math., vol. 465, Amer. Math. Soc., Providence, RI, 2008, pp. 175-201. MR 2457738 (2009j:14016), https://doi.org/10.1090/conm/465/09103
  • [23] S. Mukhopadhyay, Diagram automorphisms and rank-level duality, arXiv:1308.1756v1.
  • [24] Swarnava Mukhopadhyay, Rank-Level Duality of Conformal Blocks, ProQuest LLC, Ann Arbor, MI, 2013. Thesis (Ph.D.)-The University of North Carolina at Chapel Hill. MR 3153462
  • [25] Tomoki Nakanishi and Akihiro Tsuchiya, Level-rank duality of WZW models in conformal field theory, Comm. Math. Phys. 144 (1992), no. 2, 351-372. MR 1152377 (93a:81181)
  • [26] W. M. Oxbury and S. M. J. Wilson, Reciprocity laws in the Verlinde formulae for the classical groups, Trans. Amer. Math. Soc. 348 (1996), no. 7, 2689-2710. MR 1340183 (96i:14012), https://doi.org/10.1090/S0002-9947-96-01563-2
  • [27] Christian Pauly, La dualité étrange [d'après P. Belkale, A. Marian et D. Oprea], Séminaire Bourbaki. Vol. 2007/2008, Astérisque 326 (2009), Exp. No. 994, ix, 363-377 (2010) (French, with French summary). MR 2605328 (2011d:14066)
  • [28] Christian Pauly, Strange duality revisited, Math. Res. Lett. 21 (2014), no. 6, 1353-1366. MR 3335851, https://doi.org/10.4310/MRL.2014.v21.n6.a8
  • [29] Mihnea Popa, Generalized theta linear series on moduli spaces of vector bundles on curves, Handbook of moduli. Vol. III, Adv. Lect. Math. (ALM), vol. 26, Int. Press, Somerville, MA, 2013, pp. 219-255. MR 3135438
  • [30] Akihiro Tsuchiya, Kenji Ueno, and Yasuhiko Yamada, Conformal field theory on universal family of stable curves with gauge symmetries, Integrable systems in quantum field theory and statistical mechanics, Adv. Stud. Pure Math., vol. 19, Academic Press, Boston, MA, 1989, pp. 459-566. MR 1048605 (92a:81191)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 17B67, 14H60, 32G34, 81T40

Retrieve articles in all journals with MSC (2010): 17B67, 14H60, 32G34, 81T40


Additional Information

Swarnava Mukhopadhyay
Affiliation: Department of Mathematics, University of Maryland, College Park, Maryland 20742-4015
Email: swarnava@umd.edu

DOI: https://doi.org/10.1090/tran6691
Keywords: Rank-level duality, infinite dimensional Lie algebras, moduli of curves, KZ-connection
Received by editor(s): August 9, 2013
Received by editor(s) in revised form: February 24, 2015
Published electronically: December 3, 2015
Additional Notes: The first author was supported in part by NSF grant #DMS-0901249.
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society