Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Pointwise convergence to initial data of heat and Laplace equations


Authors: Gustavo Garrigós, Silvia Hartzstein, Teresa Signes, José Luis Torrea and Beatriz Viviani
Journal: Trans. Amer. Math. Soc. 368 (2016), 6575-6600
MSC (2010): Primary 42C10, 35C15, 33C45, 40A10
DOI: https://doi.org/10.1090/tran/6554
Published electronically: January 13, 2016
MathSciNet review: 3461043
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ L$ be either the Hermite or the Ornstein-Uhlenbeck operator on $ \mathbb{R}^d$. We find optimal integrability conditions on a function $ f$ for the existence of its heat and Poisson integrals, $ e^{-tL}f(x)$ and $ e^{-t\sqrt L}f(x)$, solutions respectively of $ U_t = -LU$ and $ U_{tt} = LU$ on $ \mathbb{R}^{d+1}_+$ with initial datum $ f$. As a consequence we identify the most general class of weights $ v(x)$ for which such solutions converge a.e. to $ f$ for all $ f\in L^p(v)$, and each $ p\in [1,\infty )$. Moreover, if $ 1\!<\!p\!<\!\infty $ we additionally show that for such weights the associated local maximal operators are strongly bounded from $ L^p(v)\to L^p(u)$ for some other weight $ u(x)$.


References [Enhancements On Off] (What's this?)

  • [1] Ibraheem Abu-Falahah, Pablo Raúl Stinga, and José L. Torrea, A note on the almost everywhere convergence to initial data for some evolution equations, Potential Anal. 40 (2014), no. 2, 195-202. MR 3152161, https://doi.org/10.1007/s11118-013-9351-z
  • [2] V. Aldaya, F. Cossío, J. Guerrero, and F. F. López-Ruiz, The quantum Arnold transformation, J. Phys. A 44 (2011), no. 6, 065302, 19. MR 2763443 (2012d:81140), https://doi.org/10.1088/1751-8113/44/6/065302
  • [3] N. Aronszajn and K. T. Smith, Theory of Bessel potentials. I, Ann. Inst. Fourier (Grenoble) 11 (1961), 385-475 (English, with French summary). MR 0143935 (26 #1485)
  • [4] Colin Bennett and Robert Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR 928802 (89e:46001)
  • [5] L. Carleson and P. Jones, Weighted norm inequalities and a theorem of Koosis, Mittag-Leffler Inst., report n. 2, 1981.
  • [6] José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, Notas de Matemática [Mathematical Notes], 104, North-Holland Publishing Co., Amsterdam, 1985. MR 807149 (87d:42023)
  • [7] Silvia I. Hartzstein, José L. Torrea, and Beatriz E. Viviani, A note on the convergence to initial data of heat and Poisson equations, Proc. Amer. Math. Soc. 141 (2013), no. 4, 1323-1333. MR 3008879, https://doi.org/10.1090/S0002-9939-2012-11441-8
  • [8] E. Harboure, J. L. Torrea, and B. Viviani, On the search for weighted inequalities for operators related to the Ornstein-Uhlenbeck semigroup, Math. Ann. 318 (2000), no. 2, 341-353. MR 1795566 (2002b:42029), https://doi.org/10.1007/PL00004424
  • [9] Bang-He Li, Explicit relation between the solutions of the heat and the Hermite heat equation, Z. Angew. Math. Phys. 58 (2007), no. 6, 959-968. MR 2363895 (2009a:35102), https://doi.org/10.1007/s00033-007-7044-4
  • [10] L. Liu and P. Sjögren, A characterization of the Gaussian Lipschitz space and sharp estimates for the Ornstein-Uhlenbeck Poisson kernel, to appear in Rev. Matem. Iberoamericana.
  • [11] E. M. Nikishin, A resonance theorem and series in eigenfunctions of the Laplace operator, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 795-813; English transl., Math. USSR Izv. 6 (4) (1972), 788-806 (Russian). MR 0343091 (49 #7835)
  • [12] Ebner Pineda and Wilfredo Urbina R., Non tangential convergence for the Ornstein-Uhlenbeck semigroup, Divulg. Mat. 16 (2008), no. 1, 107-124 (English, with English and Spanish summaries). MR 2587011 (2010m:60121)
  • [13] José L. Rubio de Francia, Weighted norm inequalities and vector valued inequalities, Harmonic analysis (Minneapolis, Minn., 1981) Lecture Notes in Math., vol. 908, Springer, Berlin-New York, 1982, pp. 86-101. MR 654181 (83h:42025)
  • [14] Peter Sjögren and J. L. Torrea, On the boundary convergence of solutions to the Hermite-Schrödinger equation, Colloq. Math. 118 (2010), no. 1, 161-174. MR 2600523 (2011b:42078), https://doi.org/10.4064/cm118-1-8
  • [15] Elias M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, Annals of Mathematics Studies, No. 63, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970. MR 0252961 (40 #6176)
  • [16] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095 (44 #7280)
  • [17] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192 (95c:42002)
  • [18] Pablo Raúl Stinga and José Luis Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations 35 (2010), no. 11, 2092-2122. MR 2754080 (2012c:35456), https://doi.org/10.1080/03605301003735680
  • [19] Krzysztof Stempak and José Luis Torrea, Poisson integrals and Riesz transforms for Hermite function expansions with weights, J. Funct. Anal. 202 (2003), no. 2, 443-472. MR 1990533 (2004d:42024), https://doi.org/10.1016/S0022-1236(03)00083-1
  • [20] A. Tychonoff, Théorèmes d'unicité pour l'équation de la chaleur, Math. Sb. 42 (2) (1935), 199-216.
  • [21] D. V. Widder, The heat equation, Pure and Applied Mathematics, Vol. 67, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 67. MR 0466967 (57 #6840)
  • [22] Calvin H. Wilcox, Positive temperatures with prescribed initial heat distributions, Amer. Math. Monthly 87 (1980), no. 3, 183-186. MR 562921 (81i:35077), https://doi.org/10.2307/2321603

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 42C10, 35C15, 33C45, 40A10

Retrieve articles in all journals with MSC (2010): 42C10, 35C15, 33C45, 40A10


Additional Information

Gustavo Garrigós
Affiliation: Departamento de Matemáticas, Universidad de Murcia, 30100 Murcia, Spain
Email: gustavo.garrigos@um.es

Silvia Hartzstein
Affiliation: IMAL (UNL-CONICET) y FIQ (Universidad Nacional del Litoral), Güemes 3450, 3000 Santa Fe, Argentina
Email: shartzstein@santafe-conicet.gov.ar

Teresa Signes
Affiliation: Departamento de Matemáticas, Universidad de Murcia, 30100 Murcia, Spain
Email: tmsignes@um.es

José Luis Torrea
Affiliation: Departamento de Matemáticas, Universidad Autónoma de Madrid, ICMAT-CISC- UAM-UCM-UC3M, 28049, Madrid, Spain
Email: joseluis.torrea@uam.es

Beatriz Viviani
Affiliation: IMAL (UNL-CONICET) y FIQ (Universidad Nacional del Litoral), CCT CONICET Santa Fe Colectora Ruta Nac. N168, Paraje El Pozo, 3000 Santa Fe, Argentina
Email: viviani@santafe-conicet.gov.ar

DOI: https://doi.org/10.1090/tran/6554
Keywords: Hermite operator, Ornstein-Uhlenbeck, Poisson integral, weighted inequalities
Received by editor(s): November 18, 2013
Received by editor(s) in revised form: August 15, 2014, and August 29, 2014
Published electronically: January 13, 2016
Additional Notes: The first author was partially supported by grants MTM2010-16518, MTM2013-40945-P and MTM2014-57838-C2-1-P (Spain). The third author was partially supported by grants MTM2013-42220-P and Fundación Séneca 19378/PI/14 (Murcia, Spain). The fourth author was partially supported by Grant MTM2011-28149-C02-01 (Spain). The second and fifth authors were partially supported by grants from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional del Litoral (Argentina).
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society