Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Modular forms, de Rham cohomology and congruences

Authors: Matija Kazalicki and Anthony J. Scholl
Journal: Trans. Amer. Math. Soc. 368 (2016), 7097-7117
MSC (2010): Primary 14F40, 11F33, 11F80
Published electronically: December 22, 2015
MathSciNet review: 3471086
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we show that Atkin and Swinnerton-Dyer type of congruences hold for weakly modular forms (modular forms that are permitted to have poles at cusps). Unlike the case of original congruences for cusp forms, these congruences are nontrivial even for congruence subgroups. On the way we provide an explicit interpretation of the de Rham cohomology groups associated to modular forms in terms of ``differentials of the second kind''. As an example, we consider the space of cusp forms of weight 3 on a certain genus zero quotient of Fermat curve $ X^N+Y^N=Z^N$. We show that the Galois representation associated to this space is given by a Grössencharacter of the cyclotomic field $ \mathbb{Q}(\zeta _N)$. Moreover, for $ N=5$ the space does not admit a ``$ p$-adic Hecke eigenbasis'' for (nonordinary) primes $ p\equiv 2,3 \pmod {5}$, which provides a counterexample to Atkin and Swinnerton-Dyer's original speculation.

References [Enhancements On Off] (What's this?)

  • [1] A. O. L. Atkin, Wen-Ching Winnie Li, and Ling Long, On Atkin and Swinnerton-Dyer congruence relations. II, Math. Ann. 340 (2008), no. 2, 335-358. MR 2368983 (2009a:11102),
  • [2] A. O. L. Atkin and H. P. F. Swinnerton-Dyer, Modular forms on noncongruence subgroups, Combinatorics (Proc. Sympos. Pure Math., Vol. XIX, Univ. California, Los Angeles, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1971, pp. 1-25. MR 0337781 (49 #2550)
  • [3] Bruce C. Berndt, Ronald J. Evans, and Kenneth S. Williams, Gauss and Jacobi sums, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1998. MR 1625181 (99d:11092)
  • [4] P. Cartier, Groupes formels, fonctions automorphes et fonctions zeta des courbes elliptiques, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 291-299. MR 0429920 (55 #2929)
  • [5] Pierre Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, Vol. 163, Springer-Verlag, Berlin-New York, 1970 (French). MR 0417174 (54 #5232)
  • [6] Bert Ditters, Sur les congruences d'Atkin et de Swinnerton-Dyer, C. R. Acad. Sci. Paris Sér. A-B 282 (1976), no. 19, Ai, A1131-A1134 (French, with English summary). MR 0419465 (54 #7486)
  • [7] Nicholas M. Katz, $ p$-adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Mathematics, Vol. 350, Springer, Berlin, 1973, pp. 69-190. MR 0447119 (56 #5434)
  • [8] Jonas Kibelbek, On Atkin and Swinnerton-Dyer congruences for noncongruence modular forms, Proc. Amer. Math. Soc. 142 (2014), no. 12, 4029-4038. MR 3266975,
  • [9] Wen-Ching Winnie Li, Ling Long, and Zifeng Yang, On Atkin-Swinnerton-Dyer congruence relations, J. Number Theory 113 (2005), no. 1, 117-148. MR 2141761 (2006c:11053),
  • [10] Ling Long, On Atkin and Swinnerton-Dyer congruence relations. III, J. Number Theory 128 (2008), no. 8, 2413-2429. MR 2394828 (2009e:11085),
  • [11] David E. Rohrlich, Points at infinity on the Fermat curves, Invent. Math. 39 (1977), no. 2, 95-127. MR 0441978 (56 #367)
  • [12] A. J. Scholl, Modular forms and de Rham cohomology; Atkin-Swinnerton-Dyer congruences, Invent. Math. 79 (1985), no. 1, 49-77. MR 774529 (86j:11045),
  • [13] A. J. Scholl, Motives for modular forms, Invent. Math. 100 (1990), no. 2, 419-430. MR 1047142 (91e:11054),
  • [14] Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures, No. 1, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. MR 0314766 (47 #3318)
  • [15] André Weil, Jacobi sums as ``Grössencharaktere'', Trans. Amer. Math. Soc. 73 (1952), 487-495. MR 0051263 (14,452d)
  • [16] Tonghai Yang, Cusp forms of weight $ 1$ associated to Fermat curves, Duke Math. J. 83 (1996), no. 1, 141-156. MR 1388846 (97e:11053),

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 14F40, 11F33, 11F80

Retrieve articles in all journals with MSC (2010): 14F40, 11F33, 11F80

Additional Information

Matija Kazalicki
Affiliation: Department of Mathematics, University of Zagreb, Bijenicka cesta 30, Zagreb, Croatia

Anthony J. Scholl
Affiliation: Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, United Kingdom

Received by editor(s): April 22, 2013
Received by editor(s) in revised form: April 28, 2014, July 21, 2014, and September 4, 2014
Published electronically: December 22, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society