Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Wonder of sine-Gordon $ Y$-systems


Authors: Tomoki Nakanishi and Salvatore Stella
Journal: Trans. Amer. Math. Soc. 368 (2016), 6835-6886
MSC (2010): Primary 13F60, 17B37
DOI: https://doi.org/10.1090/tran/6505
Published electronically: January 22, 2016
MathSciNet review: 3471079
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The sine-Gordon $ Y$-systems and the reduced sine-Gordon $ Y$-
systems were introduced by Tateo in the 1990's in the study of the integrable deformation of conformal field theory by the thermodynamic Bethe ansatz method. The periodicity property and the dilogarithm identities concerning these $ Y$-systems were conjectured by Tateo, and only a part of them have been proved so far. In this paper we formulate these $ Y$-systems by the polygon realization of cluster algebras of types $ A$ and $ D$ and prove the conjectured periodicity and dilogarithm identities in full generality. As it turns out, there is a wonderful interplay among continued fractions, triangulations of polygons, cluster algebras, and $ Y$-systems.


References [Enhancements On Off] (What's this?)

  • [Cha05] Frédéric Chapoton, Functional identities for the Rogers dilogarithm associated to cluster $ Y$-systems, Bull. London Math. Soc. 37 (2005), no. 5, 755-760. MR 2164838 (2006f:33002), https://doi.org/10.1112/S0024609305004510
  • [DWZ10] Harm Derksen, Jerzy Weyman, and Andrei Zelevinsky, Quivers with potentials and their representations II: applications to cluster algebras, J. Amer. Math. Soc. 23 (2010), no. 3, 749-790. MR 2629987 (2012c:16044), https://doi.org/10.1090/S0894-0347-10-00662-4
  • [FG07] Vladimir V. Fock and Alexander B. Goncharov, Dual Teichmüller and lamination spaces, Handbook of Teichmüller theory. Vol. I, IRMA Lect. Math. Theor. Phys., vol. 11, Eur. Math. Soc., Zürich, 2007, pp. 647-684. MR 2349682 (2008k:32033), https://doi.org/10.4171/029-1/16
  • [Foc97] V. V. Fock, Dual Teichmüller spaces, 1997, arXiv: dg-ga/9702018.
  • [FS95] Edward Frenkel and András Szenes, Thermodynamic Bethe ansatz and dilogarithm identities. I, Math. Res. Lett. 2 (1995), no. 6, 677-693. MR 1362962 (97a:11182), https://doi.org/10.4310/MRL.1995.v2.n6.a2
  • [FST08] Sergey Fomin, Michael Shapiro, and Dylan Thurston, Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math. 201 (2008), no. 1, 83-146. MR 2448067 (2010b:57032), https://doi.org/10.1007/s11511-008-0030-7
  • [FT12] S. Fomin and D. Thurston, Cluster algebras and triangulated surfaces. Part II: Lambda lengths, 2012, arXiv:1210.5569.
  • [FZ02] Sergey Fomin and Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497-529 (electronic). MR 1887642 (2003f:16050), https://doi.org/10.1090/S0894-0347-01-00385-X
  • [FZ03a] Sergey Fomin and Andrei Zelevinsky, Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), no. 1, 63-121. MR 2004457 (2004m:17011), https://doi.org/10.1007/s00222-003-0302-y
  • [FZ03b] Sergey Fomin and Andrei Zelevinsky, $ Y$-systems and generalized associahedra, Ann. of Math. (2) 158 (2003), no. 3, 977-1018. MR 2031858 (2004m:17010), https://doi.org/10.4007/annals.2003.158.977
  • [FZ07] Sergey Fomin and Andrei Zelevinsky, Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), no. 1, 112-164. MR 2295199 (2008d:16049), https://doi.org/10.1112/S0010437X06002521
  • [GSV05] Michael Gekhtman, Michael Shapiro, and Alek Vainshtein, Cluster algebras and Weil-Petersson forms, Duke Math. J. 127 (2005), no. 2, 291-311. MR 2130414 (2006d:53103), https://doi.org/10.1215/S0012-7094-04-12723-X
  • [GT96] F. Gliozzi and R. Tateo, Thermodynamic Bethe ansatz and three-fold triangulations, Internat. J. Modern Phys. A 11 (1996), no. 22, 4051-4064. MR 1403679 (97e:82014), https://doi.org/10.1142/S0217751X96001905
  • [IIK$^+$10] Rei Inoue, Osamu Iyama, Bernhard Keller, Atsuo Kuniba, and Tomoki Nakanishi, Periodicities of T-systems and Y-systems, dilogarithm identities, and cluster algebras II: types $ C_r$, $ F_4$, and $ G_2$, Publ. Res. Inst. Math. Sci. 49 (2013), no. 1, 43-85. MR 3029995, https://doi.org/10.4171/PRIMS/96
  • [IIK$^+$13] Rei Inoue, Osamu Iyama, Bernhard Keller, Atsuo Kuniba, and Tomoki Nakanishi, Periodicities of T-systems and Y-systems, dilogarithm identities, and cluster algebras I: type $ B_r$, Publ. Res. Inst. Math. Sci. 49 (2013), no. 1, 1-42. MR 3029994, https://doi.org/10.4171/PRIMS/95
  • [Kel10] Bernhard Keller, Cluster algebras, quiver representations and triangulated categories, Triangulated categories, London Math. Soc. Lecture Note Ser., vol. 375, Cambridge Univ. Press, Cambridge, 2010, pp. 76-160. MR 2681708 (2011h:13033)
  • [Kel13] Bernhard Keller, The periodicity conjecture for pairs of Dynkin diagrams, Ann. of Math. (2) 177 (2013), no. 1, 111-170. MR 2999039, https://doi.org/10.4007/annals.2013.177.1.3
  • [KNS94] Atsuo Kuniba, Tomoki Nakanishi, and Junji Suzuki, Functional relations in solvable lattice models. I. Functional relations and representation theory, Internat. J. Modern Phys. A 9 (1994), no. 30, 5215-5266. MR 1304818 (96h:82003), https://doi.org/10.1142/S0217751X94002119
  • [Nak11a] Tomoki Nakanishi, Dilogarithm identities for conformal field theories and cluster algebras: simply laced case, Nagoya Math. J. 202 (2011), 23-43. MR 2804544
  • [Nak11b] Tomoki Nakanishi, Periodicities in cluster algebras and dilogarithm identities, Representations of algebras and related topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, pp. 407-443. MR 2931902, https://doi.org/10.4171/101-1/9
  • [NS12] T. Nakanishi and S. Stella, Wonder of sine-Gordon $ Y$-systems, 2012, preprint version in arXiv:1212.6853.
  • [NS14] Tomoki Nakanishi and Salvatore Stella, Diagrammatic description of $ c$-vectors and $ d$-vectors of cluster algebras of finite type, Electron. J. Combin. 21 (2014), no. 1, Paper 1.3, 107. MR 3177498
  • [NT10] Tomoki Nakanishi and Roberto Tateo, Dilogarithm identities for sine-Gordon and reduced sine-Gordon Y-systems, SIGMA Symmetry Integrability Geom. Methods Appl. 6 (2010), Paper 085, 34. MR 2769930 (2012d:81169), https://doi.org/10.3842/SIGMA.2010.085
  • [Pla11] Pierre-Guy Plamondon, Cluster algebras via cluster categories with infinite-dimensional morphism spaces, Compos. Math. 147 (2011), no. 6, 1921-1954. MR 2862067, https://doi.org/10.1112/S0010437X11005483
  • [RTV93] F. Ravanini, A. Valleriani, and R. Tateo, Dynkin TBAs, Internat. J. Modern Phys. A 8 (1993), no. 10, 1707-1727. MR 1216231 (94h:81149), https://doi.org/10.1142/S0217751X93000709
  • [Tat95a] R. Tateo, New functional dilogarithm identities and sine-Gordon $ Y$-systems, Phys. Lett. B 355 (1995), no. 1-2, 157-164. MR 1343426 (96i:81179), https://doi.org/10.1016/0370-2693(95)00751-6
  • [Tat95b] R. Tateo, The sine-Gordon model as $ ({\rm SO}(n)_1\times {\rm SO}(n)_1/{\rm SO}(n)_2)$-perturbed coset theory and generalizations, Internat. J. Modern Phys. A 10 (1995), no. 9, 1357-1376. MR 1324165 (96b:81116), https://doi.org/10.1142/S0217751X95000656
  • [Wal48] H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand Company, Inc., New York, N. Y., 1948. MR 0025596 (10,32d)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 13F60, 17B37

Retrieve articles in all journals with MSC (2010): 13F60, 17B37


Additional Information

Tomoki Nakanishi
Affiliation: Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya, 464-8604, Japan
Email: nakanisi@math.nagoya-u.ac.jp

Salvatore Stella
Affiliation: Department of Mathematics, North Carolina State University, Box 8205, Raleigh, North Carolina 27695-8205
Email: sstella@ncsu.edu

DOI: https://doi.org/10.1090/tran/6505
Received by editor(s): February 1, 2014
Received by editor(s) in revised form: June 24, 2014
Published electronically: January 22, 2016
Additional Notes: The second author was partially supported by A. Zelevinsky’s NSF grant DMS-1103813
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society