Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Riesz transform characterizations of Musielak-Orlicz-Hardy spaces


Authors: Jun Cao, Der-Chen Chang, Dachun Yang and Sibei Yang
Journal: Trans. Amer. Math. Soc. 368 (2016), 6979-7018
MSC (2010): Primary 47B06; Secondary 42B20, 42B30, 42B35, 46E30
DOI: https://doi.org/10.1090/tran/6556
Published electronically: February 2, 2016
MathSciNet review: 3471083
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \varphi $ be a Musielak-Orlicz function satisfying that, for any $ (x,\,t)\in \mathbb{R}^n\times (0,\,\infty )$, $ \varphi (\cdot ,\,t)$ belongs to the Muckenhoupt weight class $ A_\infty (\mathbb{R}^n)$ with the critical weight exponent $ q(\varphi )\in [1,\,\infty )$ and $ \varphi (x,\,\cdot )$ is an Orlicz function with

$\displaystyle 0<i(\varphi )\le I(\varphi )\le 1$

which are, respectively, its critical lower type and upper type. In this article, the authors establish the Riesz transform characterizations of the Musielak-Orlicz-Hardy spaces $ H_\varphi (\mathbb{R}^n)$ which are generalizations of weighted Hardy spaces and Orlicz-Hardy spaces. Precisely, the authors characterize $ H_\varphi (\mathbb{R}^n)$ via all the first order Riesz transforms when $ \frac {i(\varphi )}{q(\varphi )}>\frac {n-1}{n}$, and via all the Riesz transforms with the order not more than $ m\in \mathbb{N}$ when $ \frac {i(\varphi )}{q(\varphi )}>\frac {n-1}{n+m-1}$. Moreover, the authors also establish the Riesz transform characterizations of $ H_\varphi (\mathbb{R}^n)$, respectively, by means of the higher order Riesz transforms defined via the homogenous harmonic polynomials or the odd order Riesz transforms. Even if when $ \varphi (x,t):=tw(x)$ for all $ x\in {\mathbb{R}}^n$ and $ t\in [0,\infty )$, these results also widen the range of weights in the known Riesz characterization of the classical weighted Hardy space $ H^1_w({\mathbb{R}}^n)$ obtained by R. L. Wheeden from $ w\in A_1({\mathbb{R}}^n)$ into $ w\in A_\infty ({\mathbb{R}}^n)$ with the sharp range $ q(w)\in [1,\frac n{n-1})$, where $ q(w)$ denotes the critical index of the weight $ w$.

References [Enhancements On Off] (What's this?)

  • [1] Robert A. Adams and John J. F. Fournier, Sobolev spaces, 2nd ed., Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003. MR 2424078 (2009e:46025)
  • [2] Sheldon Axler, Paul Bourdon, and Wade Ramey, Harmonic function theory, 2nd ed., Graduate Texts in Mathematics, vol. 137, Springer-Verlag, New York, 2001. MR 1805196 (2001j:31001)
  • [3] Aline Bonami, Justin Feuto, and Sandrine Grellier, Endpoint for the DIV-CURL lemma in Hardy spaces, Publ. Mat. 54 (2010), no. 2, 341-358. MR 2675927 (2011f:42024), https://doi.org/10.5565/PUBLMAT_54210_03
  • [4] Aline Bonami, Sandrine Grellier, and Luong Dang Ky, Paraproducts and products of functions in $ BMO(\mathbb{R}^n)$ and $ \mathcal {H}^1(\mathbb{R}^n)$ through wavelets, J. Math. Pures Appl. (9) 97 (2012), no. 3, 230-241 (English, with English and French summaries). MR 2887623, https://doi.org/10.1016/j.matpur.2011.06.002
  • [5] Huy-Qui Bui, Boundary value characterizations for weighted Hardy spaces of harmonic functions, Forum Math. 2 (1990), no. 6, 511-521. MR 1075698 (92c:42021), https://doi.org/10.1515/form.1990.2.511
  • [6] A.-P. Calderón and A. Zygmund, On higher gradients of harmonic functions, Studia Math. 24 (1964), 211-226. MR 0167631 (29 #4903)
  • [7] Lars Diening, Petteri Harjulehto, Peter Hästö, and Michael Růžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017, Springer, Heidelberg, 2011. MR 2790542
  • [8] C. Fefferman, Symposium on Harmonic Analysis, De Paul Univ. Conf., 1974.
  • [9] C. Fefferman and E. M. Stein, $ H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137-193. MR 0447953 (56 #6263)
  • [10] A. Gandulfo, J. García-Cuerva, and M. Taibleson, Conjugate system characterizations of $ H^{1}$: counter examples for the Euclidean plane and local fields, Bull. Amer. Math. Soc. 82 (1976), no. 1, 83-85. MR 0394014 (52 #14820)
  • [11] José García-Cuerva, Weighted $ H^{p}$ spaces, Dissertationes Math. (Rozprawy Mat.) 162 (1979), 63 pp. MR 549091 (82a:42018)
  • [12] José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR 807149 (87d:42023)
  • [13] Loukas Grafakos, Classical Fourier analysis, 2nd ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2008. MR 2445437 (2011c:42001)
  • [14] Loukas Grafakos, Modern Fourier analysis, 2nd ed., Graduate Texts in Mathematics, vol. 250, Springer, New York, 2009. MR 2463316 (2011d:42001)
  • [15] Steve Hofmann, Svitlana Mayboroda, and Alan McIntosh, Second order elliptic operators with complex bounded measurable coefficients in $ L^p$, Sobolev and Hardy spaces, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), no. 5, 723-800 (English, with English and French summaries). MR 2931518
  • [16] J. Horváth, Sur les fonctions conjuguées à plusieurs variables, Nederl. Akad. Wetensch. Proc. Ser. A. 56 = Indagationes Math. 15 (1953), 17-29 (French). MR 0053276 (14,747b)
  • [17] Shaoxiong Hou, Dachun Yang, and Sibei Yang, Lusin area function and molecular characterizations of Musielak-Orlicz Hardy spaces and their applications, Commun. Contemp. Math. 15 (2013), no. 6, 1350029, 37 pp.. MR 3139410
  • [18] Richard Hunt, Benjamin Muckenhoupt, and Richard Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-251. MR 0312139 (47 #701)
  • [19] Svante Janson, Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation, Duke Math. J. 47 (1980), no. 4, 959-982. MR 596123 (83j:46037)
  • [20] Takahide Kurokawa, Higher Riesz transforms and derivatives of the Riesz kernels, Integral Transforms Spec. Funct. 15 (2004), no. 1, 51-71. MR 2033354 (2005a:42013), https://doi.org/10.1080/10652460310001595228
  • [21] Luong Dang Ky, A note on $ H_w^p$-boundedness of Riesz transforms and $ \theta $-Calderón-Zygmund operators through molecular characterization, Anal. Theory Appl. 27 (2011), no. 3, 251-264. MR 2844661 (2012h:42015), https://doi.org/10.1007/s10496-011-0251-z
  • [22] Luong Dang Ky, Bilinear decompositions and commutators of singular integral operators, Trans. Amer. Math. Soc. 365 (2013), no. 6, 2931-2958. MR 3034454, https://doi.org/10.1090/S0002-9947-2012-05727-8
  • [23] Luong Dang Ky, New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators, Integral Equations Operator Theory 78 (2014), no. 1, 115-150. MR 3147406, https://doi.org/10.1007/s00020-013-2111-z
  • [24] Yiyu Liang, Jizheng Huang, and Dachun Yang, New real-variable characterizations of Musielak-Orlicz Hardy spaces, J. Math. Anal. Appl. 395 (2012), no. 1, 413-428. MR 2943633, https://doi.org/10.1016/j.jmaa.2012.05.049
  • [25] Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. MR 0293384 (45 #2461)
  • [26] Benjamin Muckenhoupt and Richard L. Wheeden, On the dual of weighted $ H^{1}$ of the half-space, Studia Math. 63 (1978), no. 1, 57-79. MR 508882 (80k:42024)
  • [27] Julian Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, vol. 1034, Springer-Verlag, Berlin, 1983. MR 724434 (85m:46028)
  • [28] Sawai Nualtaranee, On least harmonic majorants in half-spaces, Proc. London Math. Soc. (3) 27 (1973), 243-260. MR 0325988 (48 #4334)
  • [29] Marco M. Peloso and Silvia Secco, Local Riesz transforms characterization of local Hardy spaces, Collect. Math. 59 (2008), no. 3, 299-320. MR 2452309 (2010f:42043), https://doi.org/10.1007/BF03191189
  • [30] Elias M. Stein, On the theory of harmonic functions of several variables. II. Behavior near the boundary, Acta Math. 106 (1961), 137-174. MR 0173019 (30 #3234)
  • [31] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095 (44 #7280)
  • [32] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192 (95c:42002)
  • [33] Elias M. Stein and Guido Weiss, On the theory of harmonic functions of several variables. I. The theory of $ H^{p}$-spaces, Acta Math. 103 (1960), 25-62. MR 0121579 (22 #12315)
  • [34] E. M. Stein and G. Weiss, Generalization of the Cauchy-Riemann equations and representations of the rotation group, Amer. J. Math. 90 (1968), 163-196. MR 0223492 (36 #6540)
  • [35] Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32. MR 0304972 (46 #4102)
  • [36] Jan-Olov Strömberg, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J. 28 (1979), no. 3, 511-544. MR 529683 (81f:42021), https://doi.org/10.1512/iumj.1979.28.28037
  • [37] Jan-Olov Strömberg and Alberto Torchinsky, Weighted Hardy spaces, Lecture Notes in Mathematics, vol. 1381, Springer-Verlag, Berlin, 1989. MR 1011673 (90j:42053)
  • [38] Akihito Uchiyama, The Fefferman-Stein decomposition of smooth functions and its application to $ H^{p}({\bf R}^{n})$, Pacific J. Math. 115 (1984), no. 1, 217-255. MR 762212 (86j:42028)
  • [39] Akihito Uchiyama, Hardy spaces on the Euclidean space, Springer Monographs in Mathematics, Springer-Verlag, Tokyo, 2001. With a foreword by Nobuhiko Fujii, Akihiko Miyachi and Kôzô Yabuta and a personal recollection of Uchiyama by Peter W. Jones. MR 1845883 (2002d:46021)
  • [40] Beatriz E. Viviani, An atomic decomposition of the predual of $ {\rm BMO}(\rho )$, Rev. Mat. Iberoamericana 3 (1987), no. 3-4, 401-425. MR 996824 (90e:46024), https://doi.org/10.4171/RMI/56
  • [41] Richard L. Wheeden, A boundary value characterization of weighted $ H^{1}$, Enseignement Math. (2) 22 (1976), no. 1-2, 121-134. MR 0417672 (54 #5721)
  • [42] Richard L. Wheeden, On the dual of weighted $ H^{1}(z<1)$, Approximation theory (Papers, VIth Semester, Stefan Banach Internat. Math. Center, Warsaw, 1975) Banach Center Publ., vol. 4, PWN, Warsaw, 1979, pp. 293-303. MR 553776 (82a:46030)
  • [43] Kôzô Yabuta, Generalizations of Calderón-Zygmund operators, Studia Math. 82 (1985), no. 1, 17-31. MR 809770 (87e:47072)
  • [44] Dachun Yang and Sibei Yang, Musielak-Orlicz-Hardy spaces associated with operators and their applications, J. Geom. Anal. 24 (2014), no. 1, 495-570. MR 3145932, https://doi.org/10.1007/s12220-012-9344-y

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 47B06, 42B20, 42B30, 42B35, 46E30

Retrieve articles in all journals with MSC (2010): 47B06, 42B20, 42B30, 42B35, 46E30


Additional Information

Jun Cao
Affiliation: School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, People’s Republic of China
Address at time of publication: Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, People’s Republic of China
Email: caojun1860@zjut.edu.cn

Der-Chen Chang
Affiliation: Department of Mathematics and Department of Computer Science, Georgetown University, Washington DC 20057 – and – Department of Mathematics, Fu Jen Catholic University, Taipei 242, Taiwan
Email: chang@georgetown.edu

Dachun Yang
Affiliation: School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, People’s Republic of China
Email: dcyang@bnu.edu.cn

Sibei Yang
Affiliation: School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China
Email: yangsb@lzu.edu.cn

DOI: https://doi.org/10.1090/tran/6556
Keywords: Riesz transform, harmonic function, Cauchy-Riemann equation, Musielak-Orlicz-Hardy space
Received by editor(s): January 27, 2014
Received by editor(s) in revised form: August 27, 2014
Published electronically: February 2, 2016
Additional Notes: The third author is the corresponding author
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society