Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Recovering the Hamiltonian from spectral data


Authors: C. Hériveaux and T. Paul
Journal: Trans. Amer. Math. Soc. 368 (2016), 7239-7279
MSC (2010): Primary 35-XX, 37-XX, 41-XX, 58-XX, 81-XX
DOI: https://doi.org/10.1090/tran/6566
Published electronically: January 27, 2016
MathSciNet review: 3471090
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the contributions to the Gutzwiller formula with observables associated to the iterates of a given elliptic non-degenerate periodic trajectory $ \gamma $ and to certain families of observables localized near $ \gamma $ determine the quantum Hamiltonian in a formal neighborhood of the trajectory $ \gamma $, that is, the full Taylor expansion of its total symbol near $ \gamma $. We also treat the ``bottom of a well'' case both for general and Schrödinger operators, and give some analog classical results.


References [Enhancements On Off] (What's this?)

  • [1] J. Chazarain, Formule de Poisson pour les variétés riemanniennes, Invent. Math. 24 (1974), 65-82 (French). MR 0343320 (49 #8062)
  • [2] Yves Colin de Verdière, Spectre du laplacien et longueurs des géodésiques périodiques. I, II, Compositio Math. 27 (1973), 83-106; ibid. 27 (1973), 159-184 (French). MR 0348798 (50 #1293)
  • [3] Y. Colin de Verdière, A semiclassical inverse problem II: Reconstruction of the potential, arXiv:0802.1643
  • [4] Y. Colin de Verdière and V. Guillemin, A semiclassical inverse problem I: Taylor expansions, arXiv:0802.1605v1
  • [5] J. J. Duistermaat and V. W. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. 29 (1975), no. 1, 39-79. MR 0405514 (53 #9307)
  • [6] David Fried, Cyclic resultants of reciprocal polynomials, Holomorphic dynamics (Mexico, 1986) Lecture Notes in Math., vol. 1345, Springer, Berlin, 1988, pp. 124-128. MR 980956 (90h:57004), https://doi.org/10.1007/BFb0081399
  • [7] Victor Guillemin, Wave-trace invariants, Duke Math. J. 83 (1996), no. 2, 287-352. MR 1390650 (97f:58131), https://doi.org/10.1215/S0012-7094-96-08311-8
  • [8] Victor Guillemin and Thierry Paul, Some remarks about semiclassical trace invariants and quantum normal forms, Comm. Math. Phys. 294 (2010), no. 1, 1-19. MR 2575473 (2011a:58059), https://doi.org/10.1007/s00220-009-0920-3
  • [9] V. Guillemin, T. Paul, and A. Uribe, ``Bottom of the well'' semi-classical trace invariants, Math. Res. Lett. 14 (2007), no. 4, 711-719. MR 2335997 (2008g:58040), https://doi.org/10.4310/MRL.2007.v14.n4.a16
  • [10] Victor Guillemin and Alejandro Uribe, Some inverse spectral results for semi-classical Schrödinger operators, Math. Res. Lett. 14 (2007), no. 4, 623-632. MR 2335988 (2008h:35041), https://doi.org/10.4310/MRL.2007.v14.n4.a7
  • [11] M. Gutzwiller, Periodic orbits and classical quantization conditions, J. Math. Phys. 12 (1971), 343-358.
  • [12] A. Iantchenko, J. Sjöstrand, and M. Zworski, Birkhoff normal forms in semi-classical inverse problems, Math. Res. Lett. 9 (2002), no. 2-3, 337-362. MR 1909649 (2003f:35284), https://doi.org/10.4310/MRL.2002.v9.n3.a9
  • [13] Mark Kac, Can one hear the shape of a drum?, Amer. Math. Monthly 73 (1966), no. 4, 1-23. MR 0201237 (34 #1121)
  • [14] Thierry Paul and Alejandro Uribe, Sur la formule semi-classique des traces, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), no. 5, 217-222 (French, with English summary). MR 1126383 (93d:58161)
  • [15] T. Paul and A. Uribe, The semi-classical trace formula and propagation of wave packets, J. Funct. Anal. 132 (1995), no. 1, 192-249. MR 1346223 (97c:58160), https://doi.org/10.1006/jfan.1995.1105
  • [16] Thierry Paul and Alejandro Uribe, A construction of quasi-modes using coherent states, Ann. Inst. H. Poincaré Phys. Théor. 59 (1993), no. 4, 357-381 (English, with English and French summaries). MR 1254977 (95a:58126)
  • [17] Didier Robert, Autour de l'approximation semi-classique, Progress in Mathematics, vol. 68, Birkhäuser Boston, Inc., Boston, MA, 1987 (French). MR 897108 (89g:81016)
  • [18] Alan Weinstein, Lectures on symplectic manifolds, Expository lectures from the CBMS Regional Conference held at the University of North Carolina, March 8-12, 1976; Regional Conference Series in Mathematics, No. 29, American Mathematical Society, Providence, R.I., 1977. MR 0464312 (57 #4244)
  • [19] S. Zelditch, Wave invariants at elliptic closed geodesics, Geom. Funct. Anal. 7 (1997), no. 1, 145-213. MR 1437476 (98f:58191), https://doi.org/10.1007/PL00001615
  • [20] S. Zelditch, Wave invariants for non-degenerate closed geodesics, Geom. Funct. Anal. 8 (1998), no. 1, 179-217. MR 1601862 (98m:58136), https://doi.org/10.1007/s000390050052

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35-XX, 37-XX, 41-XX, 58-XX, 81-XX

Retrieve articles in all journals with MSC (2010): 35-XX, 37-XX, 41-XX, 58-XX, 81-XX


Additional Information

C. Hériveaux
Affiliation: CMLS École polytechnique, 91 128 Palaiseau cedex, France
Email: cyrille.heriveaux@math.polytechnique.fr

T. Paul
Affiliation: CNRS and CMLS École polytechnique, 91 128 Palaiseau cedex, France
Email: thierry.paul@polytechnique.edu

DOI: https://doi.org/10.1090/tran/6566
Received by editor(s): November 14, 2013
Received by editor(s) in revised form: September 15, 2014
Published electronically: January 27, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society