Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

On higher real and stable ranks for $ CCR$ $ C^*-$algebras


Author: Lawrence G. Brown
Journal: Trans. Amer. Math. Soc. 368 (2016), 7461-7475
MSC (2010): Primary 46L05; Secondary 46M20
DOI: https://doi.org/10.1090/tran/6616
Published electronically: January 27, 2016
MathSciNet review: 3471097
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We calculate the real rank and stable rank of $ CCR$ algebras which either have only finite dimensional irreducible representations or have finite topological dimension. We show that either rank of $ A$ is determined in a good way by the ranks of an ideal $ I$ and the quotient $ A/I$ in four cases: when $ A$ is $ CCR$; when $ I$ has only finite dimensional irreducible representations; when $ I$ is separable, of generalized continuous trace and finite topological dimension, and all irreducible representations of $ I$ are infinite dimensional; or when $ I$ is separable, stable, has an approximate identity consisting of projections, and has the corona factorization property. We also present a counterexample on higher ranks of $ M(A)$, $ A$ subhomogeneous, and a theorem of P. Green on generalized continuous trace algebras.


References [Enhancements On Off] (What's this?)

  • [AK] Robert J. Archbold and Eberhard Kaniuth, Stable rank and real rank for some classes of group $ C^*$-algebras, Trans. Amer. Math. Soc. 357 (2005), no. 6, 2165-2186 (electronic). MR 2140436 (2006b:46070), https://doi.org/10.1090/S0002-9947-05-03835-3
  • [BEv] Edwin J. Beggs and David E. Evans, The real rank of algebras of matrix valued functions, Internat. J. Math. 2 (1991), no. 2, 131-138. MR 1094700 (92e:46114), https://doi.org/10.1142/S0129167X91000089
  • [BEl] Ola Bratteli and George A. Elliott, Structure spaces of approximately finite-dimensional $ C^{\ast } $-algebras. II, J. Funct. Anal. 30 (1978), no. 1, 74-82. MR 513479 (80d:46111), https://doi.org/10.1016/0022-1236(78)90056-3
  • [Br1] Lawrence G. Brown, Stable isomorphism of hereditary subalgebras of $ C^*$-algebras, Pacific J. Math. 71 (1977), no. 2, 335-348. MR 0454645 (56 #12894)
  • [Br2] Lawrence G. Brown, Semicontinuity and multipliers of $ C^*$-algebras, Canad. J. Math. 40 (1988), no. 4, 865-988. MR 969204 (90a:46148), https://doi.org/10.4153/CJM-1988-038-5
  • [BP1] Lawrence G. Brown and Gert K. Pedersen, $ C^*$-algebras of real rank zero, J. Funct. Anal. 99 (1991), no. 1, 131-149. MR 1120918 (92m:46086), https://doi.org/10.1016/0022-1236(91)90056-B
  • [BP2] Lawrence G. Brown and Gert K. Pedersen, Limits and $ C^\ast $-algebras of low rank or dimension, J. Operator Theory 61 (2009), no. 2, 381-417. MR 2501012 (2011f:46065)
  • [Bu] Robert C. Busby, Double centralizers and extensions of $ C^{\ast } $-algebras, Trans. Amer. Math. Soc. 132 (1968), 79-99. MR 0225175 (37 #770)
  • [D1] J. Dixmier, Points séparés dans le spectre d'une $ C^*$-algèbre, Acta Sci. Math. Szeged 22 (1961), 115-128 (French). MR 0126736 (23 #A4030)
  • [D2] Jacques Dixmier, Traces sur les $ C^*$-algèbres, Ann. Inst. Fourier (Grenoble) 13 (1963), no. fasc. 1, 219-262 (French). MR 0149317 (26 #6807)
  • [D3] Jacques Dixmier, Les $ C^{\ast } $-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964 (French). MR 0171173 (30 #1404)
  • [DD] Jacques Dixmier and Adrien Douady, Champs continus d'espaces hilbertiens et de $ C^{\ast } $-algèbres, Bull. Soc. Math. France 91 (1963), 227-284 (French). MR 0163182 (29 #485)
  • [G] Philip Green, letter dated October 14, 1976.
  • [H] Nawfal Elhage Hassan, Rang réel de certaines extensions, Proc. Amer. Math. Soc. 123 (1995), no. 10, 3067-3073 (French, with French summary). MR 1264814 (95m:46117), https://doi.org/10.2307/2160661
  • [HV] Richard H. Herman and Leonid N. Vaserstein, The stable range of $ C^{\ast } $-algebras, Invent. Math. 77 (1984), no. 3, 553-555. MR 759256 (86a:46074), https://doi.org/10.1007/BF01388839
  • [Hu] Dale Husemoller, Fibre bundles, 2nd ed., Graduate Texts in Mathematics, No. 20, Springer-Verlag, New York-Heidelberg, 1975. MR 0370578 (51 #6805)
  • [K] G. G. Kasparov, Hilbert $ C^{\ast } $-modules: theorems of Stinespring and Voiculescu, J. Operator Theory 4 (1980), no. 1, 133-150. MR 587371 (82b:46074)
  • [KN] Dan Kucerovsky and P. W. Ng, The corona factorization property and approximate unitary equivalence, Houston J. Math. 32 (2006), no. 2, 531-550 (electronic). MR 2219330 (2007c:46071)
  • [L] Hua Xin Lin, Generalized Weyl-von Neumann theorems, Internat. J. Math. 2 (1991), no. 6, 725-739. MR 1137095 (92m:46087), https://doi.org/10.1142/S0129167X91000405
  • [NOP] Masaru Nagisa, Hiroyuki Osaka, and N. Christopher Phillips, Ranks of algebras of continuous $ C^\ast $-algebra valued functions, Canad. J. Math. 53 (2001), no. 5, 979-1030. MR 1859764 (2002h:46094), https://doi.org/10.4153/CJM-2001-039-8
  • [Na1] Gabriel Nagy, Some remarks on lifting invertible elements from quotient $ C^*$-algebras, J. Operator Theory 21 (1989), no. 2, 379-386. MR 1023322 (90m:46123)
  • [Ni1] V. Nistor, Stable range for tensor products of extensions of $ {\mathcal {K}}$ by $ C(X)$, J. Operator Theory 16 (1986), no. 2, 387-396. MR 860355 (88b:46085)
  • [Ni2] Victor Nistor, Stable rank for a certain class of type $ {\rm I}$ $ C^\ast $-algebras, J. Operator Theory 17 (1987), no. 2, 365-373. MR 887231 (88h:46110)
  • [O1] Hiroyuki Osaka, Real rank of crossed products by connected compact groups, Bull. London Math. Soc. 27 (1995), no. 3, 257-264. MR 1328702 (96e:46076), https://doi.org/10.1112/blms/27.3.257
  • [O2] Hiroyuki Osaka, Non-commutative dimension for $ C^*$-algebras, Interdiscip. Inform. Sci. 9 (2003), no. 2, 209-220. MR 2038012 (2004k:46091), https://doi.org/10.4036/iis.2003.209
  • [P] Gert K. Pedersen, $ C^{\ast } $-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR 548006 (81e:46037)
  • [Ri] Marc A. Rieffel, Dimension and stable rank in the $ K$-theory of $ C^{\ast }$-algebras, Proc. London Math. Soc. (3) 46 (1983), no. 2, 301-333. MR 693043 (84g:46085), https://doi.org/10.1112/plms/s3-46.2.301
  • [Sh] Albert Jeu-Liang Sheu, A cancellation theorem for modules over the group $ C^\ast $-algebras of certain nilpotent Lie groups, Canad. J. Math. 39 (1987), no. 2, 365-427. MR 899843 (88i:46093), https://doi.org/10.4153/CJM-1987-018-7
  • [W] Wilhelm Winter, Decomposition rank of subhomogeneous $ C^*$-algebras, Proc. London Math. Soc. (3) 89 (2004), no. 2, 427-456. MR 2078703 (2005d:46121), https://doi.org/10.1112/S0024611504014716

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 46L05, 46M20

Retrieve articles in all journals with MSC (2010): 46L05, 46M20


Additional Information

Lawrence G. Brown
Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
Email: lgb@math.purdue.edu

DOI: https://doi.org/10.1090/tran/6616
Keywords: $C^*-$algebra, stable rank, real rank, $CCR$, generalized continuous trace
Received by editor(s): May 6, 2014
Received by editor(s) in revised form: October 21, 2014
Published electronically: January 27, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society