Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ V$-filtrations in positive characteristic and test modules


Author: Axel Stäbler
Journal: Trans. Amer. Math. Soc. 368 (2016), 7777-7808
MSC (2010): Primary 13A35; Secondary 14B05
DOI: https://doi.org/10.1090/tran/6632
Published electronically: January 27, 2016
MathSciNet review: 3546784
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ be a ring essentially of finite type over an $ F$-finite field. Given an ideal $ \mathfrak{a}$ and a principal Cartier module $ M$ we introduce the notion of a $ V$-filtration of $ M$ along $ \mathfrak{a}$. If $ M$ is $ F$-regular, then this coincides with the test module filtration. We also show that the associated graded induces a functor $ Gr^{[0,1]}$ from Cartier crystals to Cartier crystals supported on $ V(\mathfrak{a})$. This functor commutes with finite pushforwards for principal ideals and with pullbacks along essentially étale morphisms. We also derive corresponding transformation rules for test modules generalizing previous results by Schwede and Tucker in the étale case.

If $ \mathfrak{a} = (f)$ defines a smooth hypersurface and $ R$ is in addition smooth, then for a Cartier crystal corresponding to a locally constant sheaf on $ \operatorname {Spec} R_{\acute {e}t}$ the functor $ Gr^{[0,1]}$ corresponds, up to a shift, to $ i^!$, where $ i: V(\mathfrak{a}) \to \operatorname {Spec} R$ is the closed immersion.


References [Enhancements On Off] (What's this?)

  • [1] Manuel Blickle, Minimal $ \gamma $-sheaves, Algebra Number Theory 2 (2008), no. 3, 347-368. MR 2407119 (2010b:13006), https://doi.org/10.2140/ant.2008.2.347
  • [2] Manuel Blickle, Test ideals via algebras of $ p^{-e}$-linear maps, J. Algebraic Geom. 22 (2013), no. 1, 49-83. MR 2993047, https://doi.org/10.1090/S1056-3911-2012-00576-1
  • [3] Manuel Blickle and Gebhard Böckle, Cartier modules: finiteness results, J. Reine Angew. Math. 661 (2011), 85-123. MR 2863904, https://doi.org/10.1515/CRELLE.2011.087
  • [4] Manuel Blickle and Gebhard Böckle, A corresondence between crystals over function fields and Emerton-Kisin's unit $ \mathcal {O}_{X}[{F}]$-modules, preprint (2012).
  • [5] Manuel Blickle and Gebhard Böckle, Cartier crystals, arXiv:1309.1035 (2013).
  • [6] Manuel Blickle and Gebhard Böckle, Cartier crystals: Duality, preprint (2013).
  • [7] Manuel Blickle, Mircea Mustaţa, and Karen E. Smith, Discreteness and rationality of $ F$-thresholds, Michigan Math. J. 57 (2008), 43-61. Special volume in honor of Melvin Hochster. MR 2492440 (2010c:13003), https://doi.org/10.1307/mmj/1220879396
  • [8] M. Blickle and A. Stäbler, Bernstein-Sato polynomials and test modules in positive characteristic, arXiv:1402.1333 (2014).
  • [9] Gebhard Böckle and Richard Pink, Cohomological theory of crystals over function fields, EMS Tracts in Mathematics, vol. 9, European Mathematical Society (EMS), Zürich, 2009. MR 2561048 (2011d:14025)
  • [10] Nero Budur, On the $ V$-filtration of $ \mathcal {D}$-modules, Geometric methods in algebra and number theory, edited by Fedor Bogomolov and Yuri Tschinkel, Progr. Math., vol. 235, Birkhäuser Boston, Boston, MA, 2005, pp. 59-70. MR 2159377 (2007a:32010), https://doi.org/10.1007/0-8176-4417-2_3
  • [11] Nero Budur and Morihiko Saito, Multiplier ideals, $ V$-filtration, and spectrum, J. Algebraic Geom. 14 (2005), no. 2, 269-282. MR 2123230 (2006g:14012), https://doi.org/10.1090/S1056-3911-04-00398-4
  • [12] P. Deligne and N. Katz (eds.), Groupes de monodromie en géométrie algébrique. II, Lecture Notes in Mathematics, Vol. 340, Springer-Verlag, Berlin-New York, 1973 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1967-1969 (SGA 7 II). MR 0354657 (50 #7135)
  • [13] David Eisenbud, Commutative algebra: With a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. MR 1322960 (97a:13001)
  • [14] Matthew Emerton and Mark Kisin, An introduction to the Riemann-Hilbert correspondence for unit $ F$-crystals, Geometric aspects of Dwork theory. Vols. I, II, Walter de Gruyter GmbH & Co. KG, Berlin, 2004, pp. 677-700. MR 2099082 (2006c:14024)
  • [15] Matthew Emerton and Mark Kisin, The Riemann-Hilbert correspondence for unit $ F$-crystals, Astérisque 293 (2004), vi+257 (English, with English and French summaries). MR 2071510 (2005e:14027)
  • [16] Ofer Gabber, Notes on some $ t$-structures, Geometric aspects of Dwork theory. Vols. I, II, Walter de Gruyter GmbH & Co. KG, Berlin, 2004, pp. 711-734. MR 2099084 (2005m:14025)
  • [17] A. Grothendieck (ed.), Groupes de monodromie en géométrie algébrique. I, Lecture Notes in Mathematics, Vol. 288, Springer-Verlag, Berlin-New York, 1972 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1967-1969 (SGA 7 I); Avec la collaboration de M. Raynaud et D. S. Rim. MR 0354656 (50 #7134)
  • [18] A. Grothendieck and J. A. Dieudonné, Eléments de géométrie algébrique. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 166, Springer-Verlag, Berlin, 1971 (French). MR 3075000
  • [19] M. Hochster, Foundations of tight closure theory, math.lsa.umich.edu/~hochster/711F07/fndtc.pdf (accessed: 2013-09-24).
  • [20] Melvin Hochster and Craig Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), no. 1, 31-116. MR 1017784 (91g:13010), https://doi.org/10.2307/1990984
  • [21] Melvin Hochster and Craig Huneke, Tight closure of parameter ideals and splitting in module-finite extensions, J. Algebraic Geom. 3 (1994), no. 4, 599-670. MR 1297848 (95k:13002)
  • [22] M. Kashiwara, Vanishing cycle sheaves and holonomic systems of differential equations, Algebraic geometry (Tokyo/Kyoto, 1982) Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, pp. 134-142. MR 726425 (85e:58137), https://doi.org/10.1007/BFb0099962
  • [23] Ernst Kunz, On Noetherian rings of characteristic $ p$, Amer. J. Math. 98 (1976), no. 4, 999-1013. MR 0432625 (55 #5612)
  • [24] Joseph Lipman and Mitsuyasu Hashimoto, Foundations of Grothendieck duality for diagrams of schemes, Lecture Notes in Mathematics, vol. 1960, Springer-Verlag, Berlin, 2009. MR 2531717 (2010b:18001)
  • [25] B. Malgrange, Polynômes de Bernstein-Sato et cohomologie évanescente, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 243-267 (French). MR 737934 (86f:58148)
  • [26] Z. Mebkhout, Le formalisme des six opérations de Grothendieck pour les $ \mathcal {D}_X$-modules cohérents, Travaux en Cours [Works in Progress], vol. 35, Hermann, Paris, 1989 (French). With supplementary material by the author and L. Narváez Macarro. MR 1008245 (90m:32026)
  • [27] James S. Milne, Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531 (81j:14002)
  • [28] Mircea Mustaţă, Bernstein-Sato polynomials in positive characteristic, J. Algebra 321 (2009), no. 1, 128-151. MR 2469353 (2010b:13008), https://doi.org/10.1016/j.jalgebra.2008.08.014
  • [29] Mircea Mustaţă and Ken-Ichi Yoshida, Test ideals vs. multiplier ideals, Nagoya Math. J. 193 (2009), 111-128. MR 2502910 (2010a:13010)
  • [30] Karl Schwede, Test ideals in non- $ \mathbb{Q}$-Gorenstein rings, Trans. Amer. Math. Soc. 363 (2011), no. 11, 5925-5941. MR 2817415 (2012c:13011), https://doi.org/10.1090/S0002-9947-2011-05297-9
  • [31] Karl Schwede and Kevin Tucker, On the behavior of test ideals under finite morphisms, J. Algebraic Geom. 23 (2014), no. 3, 399-443. MR 3205587, https://doi.org/10.1090/S1056-3911-2013-00610-4
  • [32] A. Stäbler(mathoverflow.net/users/31051), Vanishing cycles of a locally constant sheaf for a smooth morphism in the $ l = p$-case, MathOverflow, http://mathoverflow.net/questions/124960 (version: 2013-03-19).
  • [33] Theodore J. Stadnik Jr., The V-filtration for tame unit $ F$-crystals, Selecta Math. (N.S.) 20 (2014), no. 3, 855-883. MR 3217464, https://doi.org/10.1007/s00029-013-0139-1
  • [34] Shunsuke Takagi, A characteristic $ p$ analogue of plt singularities and adjoint ideals, Math. Z. 259 (2008), no. 2, 321-341. MR 2390084 (2009b:13004), https://doi.org/10.1007/s00209-007-0227-z

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 13A35, 14B05

Retrieve articles in all journals with MSC (2010): 13A35, 14B05


Additional Information

Axel Stäbler
Affiliation: Johannes Gutenberg-Universität Mainz, Fachbereich 08, Staudingerweg 9, 55099 Mainz, Germany
Email: staebler@uni-mainz.de

DOI: https://doi.org/10.1090/tran/6632
Received by editor(s): January 21, 2014
Received by editor(s) in revised form: April 1, 2014, and December 4, 2014
Published electronically: January 27, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society