Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Local well-posedness for the $ H^2$-critical nonlinear Schrödinger equation


Authors: Thierry Cazenave, Daoyuan Fang and Zheng Han
Journal: Trans. Amer. Math. Soc. 368 (2016), 7911-7934
MSC (2010): Primary 35Q55; Secondary 35B30
DOI: https://doi.org/10.1090/tran6683
Published electronically: March 2, 2016
MathSciNet review: 3546788
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we consider the nonlinear Schrödinger equation $ iu_t +\Delta u= \lambda \vert u\vert^{\frac {4} {N-4}} u$ in $ \mathbb{R}^N $, $ N\ge 5$, with $ \lambda \in \mathbb{C}$. We prove local well-posedness (local existence, unconditional uniqueness, continuous dependence) in the critical space $ \dot H^2 (\mathbb{R}^N ) $.


References [Enhancements On Off] (What's this?)

  • [1] Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223. MR 0482275 (58 #2349)
  • [2] Björn Birnir, Carlos E. Kenig, Gustavo Ponce, Nils Svanstedt, and Luis Vega, On the ill-posedness of the IVP for the generalized Korteweg-de Vries and nonlinear Schrödinger equations, J. London Math. Soc. (2) 53 (1996), no. 3, 551-559. MR 1396718 (97d:35233), https://doi.org/10.1112/jlms/53.3.551
  • [3] Haim Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011. MR 2759829 (2012a:35002)
  • [4] Thierry Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. MR 2002047 (2004j:35266)
  • [5] Thierry Cazenave, Daoyuan Fang, and Zheng Han, Continuous dependence for NLS in fractional order spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011), no. 1, 135-147. MR 2765515 (2012a:35292), https://doi.org/10.1016/j.anihpc.2010.11.005
  • [6] Thierry Cazenave and Fred B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $ H^s$, Nonlinear Anal. 14 (1990), no. 10, 807-836. MR 1055532 (91j:35252), https://doi.org/10.1016/0362-546X(90)90023-A
  • [7] Wei Dai, Continuous dependence for $ H^2$ critical nonlinear Schrödinger equations in high dimensions. arXiv:1204.0130 [math.AP]. http://arxiv.org/abs/1204.0130
  • [8] Wei Dai, Weihua Yang, and Daomin Cao, Continuous dependence of Cauchy problem for nonlinear Schrödinger equation in $ H^s$, J. Differential Equations 255 (2013), no. 7, 2018-2064. MR 3072680, https://doi.org/10.1016/j.jde.2013.06.005
  • [9] Daoyuan Fang and Zheng Han, On the well-posedness for NLS in $ H^s$, J. Funct. Anal. 264 (2013), no. 6, 1438-1455. MR 3017270, https://doi.org/10.1016/j.jfa.2013.01.005
  • [10] Giulia Furioli and Elide Terraneo, Besov spaces and unconditional well-posedness for the nonlinear Schrödinger equation in $ \dot {H}{}^s(\mathbb{R}^n)$, Commun. Contemp. Math. 5 (2003), no. 3, 349-367. MR 1992354 (2004m:35246), https://doi.org/10.1142/S0219199703001002
  • [11] Zheng Han and Daoyuan Fang, On the unconditional uniqueness for NLS in $ \dot {H}{}^s$, SIAM J. Math. Anal. 45 (2013), no. 3, 1505-1526. MR 3056755, https://doi.org/10.1137/120871808
  • [12] Tosio Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor. 46 (1987), no. 1, 113-129 (English, with French summary). MR 877998 (88f:35133)
  • [13] Tosio Kato, Nonlinear Schrödinger equations, Schrödinger operators (Sønderborg, 1988) Lecture Notes in Phys., vol. 345, Springer, Berlin, 1989, pp. 218-263. MR 1037322 (91d:35202), https://doi.org/10.1007/3-540-51783-9_22
  • [14] Tosio Kato, On nonlinear Schrödinger equations. II. $ H^s$-solutions and unconditional well-posedness, J. Anal. Math. 67 (1995), 281-306. MR 1383498 (98a:35124a), https://doi.org/10.1007/BF02787794
  • [15] Markus Keel and Terence Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), no. 5, 955-980. MR 1646048 (2000d:35018)
  • [16] Carlos E. Kenig and Frank Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math. 166 (2006), no. 3, 645-675. MR 2257393 (2007g:35232), https://doi.org/10.1007/s00222-006-0011-4
  • [17] Rowan Killip and Monica Vişan, Nonlinear Schrödinger equations at critical regularity, Evolution equations, Clay Math. Proc., vol. 17, Amer. Math. Soc., Providence, RI, 2013, pp. 325-437. MR 3098643
  • [18] Hartmut Pecher, Solutions of semilinear Schrödinger equations in $ H^s$, Ann. Inst. H. Poincaré Phys. Théor. 67 (1997), no. 3, 259-296 (English, with English and French summaries). MR 1472820 (98k:35180)
  • [19] Keith M. Rogers, Unconditional well-posedness for subcritical NLS in $ H^s$, C. R. Math. Acad. Sci. Paris 345 (2007), no. 7, 395-398 (English, with English and French summaries). MR 2361505 (2008i:35231), https://doi.org/10.1016/j.crma.2007.09.003
  • [20] Robert S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705-714. MR 0512086 (58 #23577)
  • [21] Terence Tao, Nonlinear dispersive equations, CBMS Regional Conference Series in Mathematics, vol. 106, Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI, 2006. Local and global analysis. MR 2233925 (2008i:35211)
  • [22] Terence Tao and Monica Visan, Stability of energy-critical nonlinear Schrödinger equations in high dimensions, Electron. J. Differential Equations (2005), No. 118, 28. MR 2174550 (2006e:35307)
  • [23] Hans Triebel, Theory of function spaces, Monographs in Mathematics, vol. 78, Birkhäuser Verlag, Basel, 1983. MR 781540 (86j:46026)
  • [24] Yoshio Tsutsumi, $ L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac. 30 (1987), no. 1, 115-125. MR 915266 (89c:35143)
  • [25] Yin Yin Su Win and Yoshio Tsutsumi, Unconditional uniqueness of solution for the Cauchy problem of the nonlinear Schrödinger equation, Hokkaido Math. J. 37 (2008), no. 4, 839-859. MR 2474179 (2010e:35272), https://doi.org/10.14492/hokmj/1249046372

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35Q55, 35B30

Retrieve articles in all journals with MSC (2010): 35Q55, 35B30


Additional Information

Thierry Cazenave
Affiliation: Université Pierre et Marie Curie and CNRS, Laboratoire Jacques-Louis Lions, B.C. 187, 4 place Jussieu, 75252 Paris Cedex 05, France
Email: thierry.cazenave@upmc.fr

Daoyuan Fang
Affiliation: Department of Mathematics, Zhejiang University, Hangzhou, 310027, People’s Republic of China
Email: dyf@zju.edu.cn

Zheng Han
Affiliation: Department of Mathematics, Hangzhou Normal University, and Department of Mathematics, Zhejiang University, Hangzhou, 311121, People’s Republic of China
Email: hanzh_0102@163.com

DOI: https://doi.org/10.1090/tran6683
Keywords: $H^2$-critical nonlinear Schr\"odinger equation, local existence, continuous dependence, unconditional uniqueness
Received by editor(s): March 20, 2014
Received by editor(s) in revised form: January 16, 2015
Published electronically: March 2, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society