Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Transition fronts for inhomogeneous Fisher-KPP reactions and non-local diffusion


Authors: Tau Shean Lim and Andrej Zlatoš
Journal: Trans. Amer. Math. Soc. 368 (2016), 8615-8631
MSC (2010): Primary 35K57, 35B08; Secondary 35P05
DOI: https://doi.org/10.1090/tran/6602
Published electronically: December 22, 2015
MathSciNet review: 3551583
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove existence of and construct transition fronts for a class of reaction-diffusion equations with spatially inhomogeneous Fisher-KPP type reactions and non-local diffusion. Our approach is based on finding these solutions as perturbations of appropriate solutions to the linearization of the PDE at zero. Our work extends a method introduced by one of us to study such questions in the case of classical diffusion.


References [Enhancements On Off] (What's this?)

  • [1] Fuensanta Andreu-Vaillo, José M. Mazón, Julio D. Rossi, and J. Julián Toledo-Melero, Nonlocal diffusion problems, Mathematical Surveys and Monographs, vol. 165, American Mathematical Society, Providence, RI; Real Sociedad Matemática Española, Madrid, 2010. MR 2722295 (2011i:35002)
  • [2] Peter W. Bates, Paul C. Fife, Xiaofeng Ren, and Xuefeng Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal. 138 (1997), no. 2, 105-136. MR 1463804 (98f:45004), https://doi.org/10.1007/s002050050037
  • [3] H. Berestycki, The influence of advection on the propagation of fronts in reaction-diffusion equations, Nonlinear PDEs in Condensed Matter and Reactive Flows, NATO Science Series C, 569, H. Berestycki and Y. Pomeau, eds., Kluwer, Dordrecht, 2003.
  • [4] Henri Berestycki and François Hamel, Front propagation in periodic excitable media, Comm. Pure Appl. Math. 55 (2002), no. 8, 949-1032. MR 1900178 (2003d:35139), https://doi.org/10.1002/cpa.3022
  • [5] Henri Berestycki and François Hamel, Generalized transition waves and their properties, Comm. Pure Appl. Math. 65 (2012), no. 5, 592-648. MR 2898886, https://doi.org/10.1002/cpa.21389
  • [6] Henri Berestycki, Grégoire Nadin, Benoit Perthame, and Lenya Ryzhik, The non-local Fisher-KPP equation: travelling waves and steady states, Nonlinearity 22 (2009), no. 12, 2813-2844. MR 2557449 (2010j:35438), https://doi.org/10.1088/0951-7715/22/12/002
  • [7] Jack Carr and Adam Chmaj, Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc. 132 (2004), no. 8, 2433-2439 (electronic). MR 2052422 (2005b:35125), https://doi.org/10.1090/S0002-9939-04-07432-5
  • [8] Jérôme Coville, Harnack type inequality for positive solution of some integral equation, Ann. Mat. Pura Appl. (4) 191 (2012), no. 3, 503-528. MR 2958346, https://doi.org/10.1007/s10231-011-0193-2
  • [9] Jérôme Coville, On uniqueness and monotonicity of solutions of non-local reaction diffusion equation, Ann. Mat. Pura Appl. (4) 185 (2006), no. 3, 461-485. MR 2231034 (2007e:35156), https://doi.org/10.1007/s10231-005-0163-7
  • [10] Jérôme Coville, Juan Dávila, and Salomé Martínez, Pulsating fronts for nonlocal dispersion and KPP nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire 30 (2013), no. 2, 179-223. MR 3035974, https://doi.org/10.1016/j.anihpc.2012.07.005
  • [11] Jerome Coville and Louis Dupaigne, On a non-local equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), no. 4, 727-755. MR 2345778 (2008i:35139), https://doi.org/10.1017/S0308210504000721
  • [12] Jérôme Coville and Louis Dupaigne, Propagation speed of travelling fronts in non local reaction-diffusion equations, Nonlinear Anal. 60 (2005), no. 5, 797-819. MR 2113158 (2005k:35213), https://doi.org/10.1016/j.na.2003.10.030
  • [13] R. Fisher, The wave of advance of advantageous genes, Ann. Eugenics 7 (1937), 355-369.
  • [14] F. Hamel and N. Nadirashvili, Entire solutions of the KPP equation, Comm. Pure Appl. Math. 52 (1999), no. 10, 1255-1276. MR 1699968 (2000e:35088), https://doi.org/10.1002/(SICI)1097-0312(199910)52:10$ \langle $1255::AID-CPA4$ \rangle $3.3.CO;2-N
  • [15] A. N. Kolmogorov, I. G. Petrovskii and N. S. Piskunov, Étude de l'équation de la chaleur de matière et son application à un problème biologique, Bull. Moskov. Gos. Univ. Mat. Mekh. 1 (1937), 1-25.
  • [16] Wan-Tong Li, Yu-Juan Sun, and Zhi-Cheng Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl. 11 (2010), no. 4, 2302-2313. MR 2661901 (2011e:35185), https://doi.org/10.1016/j.nonrwa.2009.07.005
  • [17] Antoine Mellet, James Nolen, Jean-Michel Roquejoffre, and Lenya Ryzhik, Stability of generalized transition fronts, Comm. Partial Differential Equations 34 (2009), no. 4-6, 521-552. MR 2530708 (2010d:35185), https://doi.org/10.1080/03605300902768677
  • [18] Antoine Mellet, Jean-Michel Roquejoffre, and Yannick Sire, Generalized fronts for one-dimensional reaction-diffusion equations, Discrete Contin. Dyn. Syst. 26 (2010), no. 1, 303-312. MR 2552789 (2011b:35238), https://doi.org/10.3934/dcds.2010.26.303
  • [19] Antoine Mellet, Jean-Michel Roquejoffre, and Yannick Sire, Existence and asymptotics of fronts in non local combustion models, Commun. Math. Sci. 12 (2014), no. 1, 1-11. MR 3100891, https://doi.org/10.4310/CMS.2014.v12.n1.a1
  • [20] James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik, and Andrej Zlatoš, Existence and non-existence of Fisher-KPP transition fronts, Arch. Ration. Mech. Anal. 203 (2012), no. 1, 217-246. MR 2864411, https://doi.org/10.1007/s00205-011-0449-4
  • [21] James Nolen and Lenya Ryzhik, Traveling waves in a one-dimensional heterogeneous medium, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 3, 1021-1047. MR 2526414 (2010d:35201), https://doi.org/10.1016/j.anihpc.2009.02.003
  • [22] Tianyu Tao, Beite Zhu, and Andrej Zlatoš, Transition fronts for inhomogeneous monostable reaction-diffusion equations via linearization at zero, Nonlinearity 27 (2014), no. 9, 2409-2416. MR 3266860, https://doi.org/10.1088/0951-7715/27/9/2409
  • [23] Kōhei Uchiyama, The behavior of solutions of some nonlinear diffusion equations for large time, J. Math. Kyoto Univ. 18 (1978), no. 3, 453-508. MR 509494 (80g:35016)
  • [24] S. Vakulenko and V. Volpert, Generalized travelling waves for perturbed monotone reaction-diffusion systems, Nonlinear Anal. 46 (2001), no. 6, Ser. A: Theory Methods, 757-776. MR 1859795 (2002i:35105), https://doi.org/10.1016/S0362-546X(00)00130-9
  • [25] Jack Xin, Front propagation in heterogeneous media, SIAM Rev. 42 (2000), no. 2, 161-230. MR 1778352 (2001i:35184), https://doi.org/10.1137/S0036144599364296
  • [26] Andrej Zlatoš, Transition fronts in inhomogeneous Fisher-KPP reaction-diffusion equations, J. Math. Pures Appl. (9) 98 (2012), no. 1, 89-102. MR 2935371, https://doi.org/10.1016/j.matpur.2011.11.007
  • [27] Andrej Zlatoš, Generalized traveling waves in disordered media: existence, uniqueness, and stability, Arch. Ration. Mech. Anal. 208 (2013), no. 2, 447-480. MR 3035984, https://doi.org/10.1007/s00205-012-0600-x

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35K57, 35B08, 35P05

Retrieve articles in all journals with MSC (2010): 35K57, 35B08, 35P05


Additional Information

Tau Shean Lim
Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706

Andrej Zlatoš
Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706

DOI: https://doi.org/10.1090/tran/6602
Received by editor(s): March 3, 2014
Received by editor(s) in revised form: October 27, 2014
Published electronically: December 22, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society