Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 


On digit frequencies in $ \beta$-expansions

Authors: Philip Boyland, André de Carvalho and Toby Hall
Journal: Trans. Amer. Math. Soc. 368 (2016), 8633-8674
MSC (2010): Primary 11A63; Secondary 37B10, 68R15
Published electronically: January 27, 2016
MathSciNet review: 3551584
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the sets $ \operatorname {DF}(\beta )$ of digit frequencies of $ \beta $-expansions of numbers in $ [0,1]$. We show that $ \operatorname {DF}(\beta )$ is a compact convex set with countably many extreme points which varies continuously with $ \beta $; that there is a full measure collection of non-trivial closed intervals on each of which $ \operatorname {DF}(\beta )$ mode locks to a constant polytope with rational vertices; and that the generic digit frequency set has infinitely many extreme points, accumulating on a single non-rational extreme point whose components are rationally independent.

References [Enhancements On Off] (What's this?)

  • [1] Valérie Berthé and Vincent Delecroix, Beyond substitutive dynamical systems: $ S$-adic expansions, Numeration and substitution 2012, RIMS Kôkyûroku Bessatsu, B46, Res. Inst. Math. Sci. (RIMS), Kyoto, 2014, pp. 81-123. MR 3330561
  • [2] A. S. Besicovitch, On the sum of digits of real numbers represented in the dyadic system, Math. Ann. 110 (1935), no. 1, 321-330. MR 1512941,
  • [3] Garrett Birkhoff, Extensions of Jentzsch's theorem, Trans. Amer. Math. Soc. 85 (1957), 219-227. MR 0087058 (19,296a)
  • [4] V. Borovikov, On the intersection of a sequence of simplexes, Uspehi Matem. Nauk (N.S.) 7 (1952), no. 6(52), 179-180 (Russian). MR 0053505 (14,784d)
  • [5] P. Boyland, A. de Carvalho, and T. Hall, New rotation sets in a family of torus homeomorphisms, Invent. Math. (in press), DOI: 10.1007/s00222-015-0628-2.
  • [6] P. Boyland, A. de Carvalho, and T. Hall, Symbol ratio minimax sequences in the lexicographic order, Ergodic Theory Dynam. Systems 35 (2015), no. 8, 2371-2396, DOI 10.1017/etds.2014.44.
  • [7] H. Bruin and S. Troubetzkoy, The Gauss map on a class of interval translation mappings, Israel J. Math. 137 (2003), 125-148. MR 2013352 (2004j:37007),
  • [8] Dong Pyo Chi and DoYong Kwon, Sturmian words, $ \beta $-shifts, and transcendence, Theoret. Comput. Sci. 321 (2004), no. 2-3, 395-404. MR 2076154 (2005e:68195),
  • [9] H. G. Eggleston, The fractional dimension of a set defined by decimal properties, Quart. J. Math., Oxford Ser. 20 (1949), 31-36. MR 0031026 (11,88e)
  • [10] Pál Erdös, István Joó, and Vilmos Komornik, Characterization of the unique expansions $ 1=\sum ^\infty _{i=1}q^{-n_i}$ and related problems, Bull. Soc. Math. France 118 (1990), no. 3, 377-390 (English, with French summary). MR 1078082 (91j:11006)
  • [11] David Fried, The geometry of cross sections to flows, Topology 21 (1982), no. 4, 353-371. MR 670741 (84d:58068),
  • [12] Doyong Kwon, A devil's staircase from rotations and irrationality measures for Liouville numbers, Math. Proc. Cambridge Philos. Soc. 145 (2008), no. 3, 739-756. MR 2464787 (2009k:37091),
  • [13] M. Lothaire, Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applications, vol. 90, Cambridge University Press, Cambridge, 2002, A collective work by Jean Berstel, Dominique Perrin, Patrice Seebold, Julien Cassaigne, Aldo De Luca, Steffano Varricchio, Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon, Veronique Bruyere, Christiane Frougny, Filippo Mignosi, Antonio Restivo, Christophe Reutenauer, Dominique Foata, Guo-Niu Han, Jacques Desarmenien, Volker Diekert, Tero Harju, Juhani Karhumaki and Wojciech Plandowski, With a preface by Berstel and Perrin. MR 1905123 (2003i:68115)
  • [14] W. Parry, On the $ \beta $-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416 (English, with Russian summary). MR 0142719 (26 #288)
  • [15] Victor V. Prasolov, Polynomials, Algorithms and Computation in Mathematics, vol. 11, Springer-Verlag, Berlin, 2010. Translated from the 2001 Russian second edition by Dimitry Leites; Paperback edition [of MR2082772]. MR 2683151 (2011g:12001)
  • [16] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar 8 (1957), 477-493. MR 0097374 (20 #3843)
  • [17] Jörg Schmeling, Symbolic dynamics for $ \beta $-shifts and self-normal numbers, Ergodic Theory Dynam. Systems 17 (1997), no. 3, 675-694. MR 1452189 (98c:11080),
  • [18] Nikita Sidorov, Almost every number has a continuum of $ \beta $-expansions, Amer. Math. Monthly 110 (2003), no. 9, 838-842. MR 2024754 (2004i:11085),
  • [19] Gerhard Winkler, Choquet order and simplices with applications in probabilistic models, Lecture Notes in Mathematics, vol. 1145, Springer-Verlag, Berlin, 1985. MR 808401 (88f:46019)
  • [20] Krystyna Ziemian, Rotation sets for subshifts of finite type, Fund. Math. 146 (1995), no. 2, 189-201. MR 1314983 (96b:58072)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11A63, 37B10, 68R15

Retrieve articles in all journals with MSC (2010): 11A63, 37B10, 68R15

Additional Information

Philip Boyland
Affiliation: Department of Mathematics, University of Florida, 372 Little Hall, Gainesville, Florida 32611-8105

André de Carvalho
Affiliation: Departamento de Matemática Aplicada, IME-USP, Rua Do Matão 1010, Cidade Universitária, 05508-090 São Paulo SP, Brazil

Toby Hall
Affiliation: Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, United Kingdom

Received by editor(s): August 29, 2013
Received by editor(s) in revised form: September 1, 2014, and October 30, 2014
Published electronically: January 27, 2016
Additional Notes: The authors would like to thank the referee, whose careful reading of the paper led to many significant improvements. We are grateful for the support of FAPESP grants 2010/09667-0 and 2011/17581-0. This research has also been supported in part by EU Marie-Curie IRSES Brazilian-European partnership in Dynamical Systems (FP7-PEOPLE-2012-IRSES 318999 BREUDS)
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society