Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

From resolvent estimates to unique continuation for the Schrödinger equation


Author: Ihyeok Seo
Journal: Trans. Amer. Math. Soc. 368 (2016), 8755-8784
MSC (2010): Primary 47A10, 35B60; Secondary 35Q40
DOI: https://doi.org/10.1090/tran/6635
Published electronically: January 13, 2016
MathSciNet review: 3551588
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we develop an abstract method to handle the problem of unique continuation for the Schrödinger equation $ (i\partial _t+\Delta )u=V(x)u$. In general the problem is to find a class of potentials $ V$ which allows the unique continuation. The key point of our work is to make a direct link between the problem and the weighted $ L^2$ resolvent estimates $ \Vert(-\Delta -z)^{-1}f\Vert _{L^2(\vert V\vert)}\leq C\Vert f\Vert _{L^2(\vert V\vert^{-1})}$. We carry it out in an abstract way, and thereby we do not need to deal with each of the potential classes. To do so, we will make use of the limiting absorption principle and Kato $ H$-smoothing theorem in spectral theory, and employ some tools from harmonic analysis. Once the resolvent estimate is set up for a potential class, from our abstract theory the unique continuation would follow from the same potential class. Also, it turns out that there can be no dented surface on the boundary of the maximal open zero set of the solution $ u$. In this regard, another main issue for us is to know which class of potentials allows the resolvent estimate. We establish such a new class which contains previously known ones, and we will also apply it to the problem of well-posedness for the equation.


References [Enhancements On Off] (What's this?)

  • [1] Shmuel Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), no. 2, 151-218. MR 0397194 (53 #1053)
  • [2] Juan A. Barceló, Jonathan M. Bennett, Anthony Carbery, Alberto Ruiz, and M. Cruz Vilela, A note on weighted estimates for the Schrödinger operator, Rev. Mat. Complut. 21 (2008), no. 2, 481-488. MR 2441963 (2010a:35030)
  • [3] J. A. Barceló, J. M. Bennett, A. Ruiz, and M. C. Vilela, Local smoothing for Kato potentials in three dimensions, Math. Nachr. 282 (2009), no. 10, 1391-1405. MR 2571701 (2010m:35078), https://doi.org/10.1002/mana.200610808
  • [4] J. A. Barcelo, A. Ruiz, and L. Vega, Weighted estimates for the Helmholtz equation and some applications, J. Funct. Anal. 150 (1997), no. 2, 356-382. MR 1479544 (99a:35033), https://doi.org/10.1006/jfan.1997.3131
  • [5] A. P. Calderón, Notes on singular integrals, MIT Press, Cambridge, Mass., 1961.
  • [6] T. Carleman, Sur un problème d'unicité pur les systèmes d'équations aux dérivées partielles à deux variables indépendantes, Ark. Mat., Astr. Fys. 26 (1939), no. 17, 9 (French). MR 0000334 (1,55f)
  • [7] K. M. Case, Singular potentials, Physical Rev. (2) 80 (1950), 797-806. MR 0040532 (12,708a)
  • [8] Sagun Chanillo and Eric Sawyer, Unique continuation for $ \Delta +v$ and the C. Fefferman-Phong class, Trans. Amer. Math. Soc. 318 (1990), no. 1, 275-300. MR 958886 (90f:35050), https://doi.org/10.2307/2001239
  • [9] R. R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc. 79 (1980), no. 2, 249-254. MR 565349 (81b:42067), https://doi.org/10.2307/2043245
  • [10] Elena Cordero and Fabio Nicola, Sharpness of some properties of Wiener amalgam and modulation spaces, Bull. Aust. Math. Soc. 80 (2009), no. 1, 105-116. MR 2520527 (2010f:42046), https://doi.org/10.1017/S0004972709000070
  • [11] Piero D'Ancona and Luca Fanelli, Strichartz and smoothing estimates of dispersive equations with magnetic potentials, Comm. Partial Differential Equations 33 (2008), no. 4-6, 1082-1112. MR 2424390 (2009i:35257), https://doi.org/10.1080/03605300701743749
  • [12] Donatella Danielli, A Fefferman-Phong type inequality and applications to quasilinear subelliptic equations, Potential Anal. 11 (1999), no. 4, 387-413. MR 1719837 (2000j:35044), https://doi.org/10.1023/A:1008674906902
  • [13] Charles L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 2, 129-206. MR 707957 (85f:35001), https://doi.org/10.1090/S0273-0979-1983-15154-6
  • [14] Damiano Foschi, Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ. 2 (2005), no. 1, 1-24. MR 2134950 (2006a:35043), https://doi.org/10.1142/S0219891605000361
  • [15] I. M. Gel'fand and G. E. Shilov, Generalized functions. Vol. I: Properties and operations, Translated by Eugene Saletan, Academic Press, New York-London, 1964. MR 0166596 (29 #3869)
  • [16] Loukas Grafakos, Modern Fourier analysis, 2nd ed., Graduate Texts in Mathematics, vol. 250, Springer, New York, 2009. MR 2463316 (2011d:42001)
  • [17] Alexandru D. Ionescu and Carlos E. Kenig, $ L^p$ Carleman inequalities and uniqueness of solutions of nonlinear Schrödinger equations, Acta Math. 193 (2004), no. 2, 193-239. MR 2134866 (2005m:35283), https://doi.org/10.1007/BF02392564
  • [18] Tosio Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann. 162 (1965/1966), 258-279. MR 0190801 (32 #8211)
  • [19] Tosio Kato and Kenji Yajima, Some examples of smooth operators and the associated smoothing effect, Rev. Math. Phys. 1 (1989), no. 4, 481-496. MR 1061120 (91i:47013), https://doi.org/10.1142/S0129055X89000171
  • [20] Markus Keel and Terence Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), no. 5, 955-980. MR 1646048 (2000d:35018)
  • [21] C. E. Kenig, A. Ruiz, and C. D. Sogge, Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J. 55 (1987), no. 2, 329-347. MR 894584 (88d:35037), https://doi.org/10.1215/S0012-7094-87-05518-9
  • [22] Carlos E. Kenig and Christopher D. Sogge, A note on unique continuation for Schrödinger's operator, Proc. Amer. Math. Soc. 103 (1988), no. 2, 543-546. MR 943081 (89i:35043), https://doi.org/10.2307/2047176
  • [23] Carlos E. Kenig and Peter A. Tomas, On conjectures of Rivière and Strichartz, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 4, 694-697. MR 532556 (81g:42019), https://doi.org/10.1090/S0273-0979-1979-14674-3
  • [24] R. Kerman and E. Sawyer, The trace inequality and eigenvalue estimates for Schrödinger operators, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 4, 207-228 (English, with French summary). MR 867921 (88b:35150)
  • [25] Douglas S. Kurtz, Littlewood-Paley and multiplier theorems on weighted $ L^{p}$spaces, Trans. Amer. Math. Soc. 259 (1980), no. 1, 235-254. MR 561835 (80f:42013), https://doi.org/10.2307/1998156
  • [26] R. Lascar and C. Zuily, Unicité et non unicité du problème de Cauchy pour une classe d'opérateurs différentiels à caractéristiques doubles, Duke Math. J. 49 (1982), no. 1, 137-162 (French). MR 650374 (83e:35007)
  • [27] Sanghyuk Lee and Ihyeok Seo, A note on unique continuation for the Schrödinger equation, J. Math. Anal. Appl. 389 (2012), no. 1, 461-468. MR 2876512, https://doi.org/10.1016/j.jmaa.2011.11.067
  • [28] Kiyoshi Mochizuki, Uniform resolvent estimates for magnetic Schrödinger operators and smoothing effects for related evolution equations, Publ. Res. Inst. Math. Sci. 46 (2010), no. 4, 741-754. MR 2791005 (2012g:81070), https://doi.org/10.2977/PRIMS/24
  • [29] Michael Reed and Barry Simon, Methods of modern mathematical physics. I: Functional analysis, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. MR 751959 (85e:46002)
  • [30] Michael Reed and Barry Simon, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0493420 (58 #12429b)
  • [31] Michael Reed and Barry Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 0493421 (58 #12429c)
  • [32] Igor Rodnianski and Wilhelm Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math. 155 (2004), no. 3, 451-513. MR 2038194 (2005h:35295), https://doi.org/10.1007/s00222-003-0325-4
  • [33] Alberto Ruiz and Luis Vega, On local regularity of Schrödinger equations, Internat. Math. Res. Notices 1 (1993), 13-27. MR 1201747 (94c:35060), https://doi.org/10.1155/S1073792893000029
  • [34] Alberto Ruiz and Luis Vega, Local regularity of solutions to wave equations with time-dependent potentials, Duke Math. J. 76 (1994), no. 3, 913-940. MR 1309336 (95m:35110), https://doi.org/10.1215/S0012-7094-94-07636-9
  • [35] Ihyeok Seo, Unique continuation for the Schrödinger equation with potentials in Wiener amalgam spaces, Indiana Univ. Math. J. 60 (2011), no. 4, 1203-1227. MR 2975341, https://doi.org/10.1512/iumj.2011.60.4824
  • [36] Ihyeok Seo, Carleman estimates for the Schrödinger operator and applications to unique continuation, Commun. Pure Appl. Anal. 11 (2012), no. 3, 1013-1036. MR 2968606, https://doi.org/10.3934/cpaa.2012.11.1013
  • [37] Ihyeok Seo, Global unique continuation from a half space for the Schrödinger equation, J. Funct. Anal. 266 (2014), no. 1, 85-98. MR 3121722, https://doi.org/10.1016/j.jfa.2013.09.025
  • [38] Barry Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 3, 447-526. MR 670130 (86b:81001a), https://doi.org/10.1090/S0273-0979-1982-15041-8
  • [39] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. With the assistance of Timothy S. Murphy, Princeton Mathematical Series, vol. 43, Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993. MR 1232192 (95c:42002)
  • [40] Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, vol. 32, Princeton University Press, Princeton, NJ, 1971. MR 0304972 (46 #4102)
  • [41] Robert S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705-714. MR 0512086 (58 #23577)
  • [42] Gerald Teschl, Mathematical methods in quantum mechanics: With applications to Schrödinger operators, Graduate Studies in Mathematics, vol. 99, American Mathematical Society, Providence, RI, 2009. MR 2499016 (2010h:81002)
  • [43] Peter A. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1975), 477-478. MR 0358216 (50 #10681)
  • [44] M. C. Vilela, Inhomogeneous Strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc. 359 (2007), no. 5, 2123-2136 (electronic). MR 2276614 (2008a:35226), https://doi.org/10.1090/S0002-9947-06-04099-2
  • [45] Claude Zuily, Uniqueness and nonuniqueness in the Cauchy problem, Progress in Mathematics, vol. 33, Birkhäuser Boston, Inc., Boston, MA, 1983. MR 701544 (85d:35009)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 47A10, 35B60, 35Q40

Retrieve articles in all journals with MSC (2010): 47A10, 35B60, 35Q40


Additional Information

Ihyeok Seo
Affiliation: Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea
Email: ihseo@skku.edu

DOI: https://doi.org/10.1090/tran/6635
Keywords: Resolvent estimates, unique continuation, Schr\"odinger equations
Received by editor(s): September 3, 2014
Received by editor(s) in revised form: November 2, 2015, and November 15, 2014
Published electronically: January 13, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society