Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Bases of random unconditional convergence in Banach spaces


Authors: J. Lopez-Abad and P. Tradacete
Journal: Trans. Amer. Math. Soc. 368 (2016), 9001-9032
MSC (2010): Primary 46B09, 46B15
DOI: https://doi.org/10.1090/tran/6636
Published electronically: March 18, 2016
MathSciNet review: 3551596
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study random unconditional convergence for a basis in a Banach space. The connections between this notion and classical unconditionality are explored. In particular, we analyze duality relations, reflexivity, uniqueness of these bases and existence of unconditional subsequences.


References [Enhancements On Off] (What's this?)

  • [1] Spiros A. Argyros and Richard G. Haydon, A hereditarily indecomposable $ \mathcal {L}_\infty $-space that solves the scalar-plus-compact problem, Acta Math. 206 (2011), no. 1, 1-54. MR 2784662 (2012e:46031), https://doi.org/10.1007/s11511-011-0058-y
  • [2] Sergey V. Astashkin, Nigel Kalton, and Fyodor A. Sukochev, Cesaro mean convergence of martingale differences in rearrangement invariant spaces, Positivity 12 (2008), no. 3, 387-406. MR 2421142 (2010k:46015), https://doi.org/10.1007/s11117-007-2146-y
  • [3] Sergey V. Astashkin, Mikhail Leibov, and Lech Maligranda, Rademacher functions in BMO, Studia Math. 205 (2011), no. 1, 83-100. MR 2822505, https://doi.org/10.4064/sm205-1-6
  • [4] Jürgen Batt and Wolfgang Hiermeyer, On compactness in $ L_{p}(\mu ,\,X)$ in the weak topology and in the topology $ \sigma (L_{p}(\mu ,\,X),\,L_{q}(\mu ,\,X^{\prime } ))$, Math. Z. 182 (1983), no. 3, 409-423. MR 696537 (84m:46039), https://doi.org/10.1007/BF01179760
  • [5] P. Billard, S. Kwapień, A. Pełczyński, and Ch. Samuel, Biorthogonal systems of random unconditional convergence in Banach spaces, Texas Functional Analysis Seminar 1985-1986 (Austin, TX, 1985-1986), Longhorn Notes, Univ. Texas, Austin, TX, 1986, pp. 13-35. MR 1017039 (90h:46019)
  • [6] J. Bourgain, An averaging result for $ c_{0}$-sequences, Bull. Soc. Math. Belg. 30 (1978), no. 1, 83-87. MR 549653 (81d:46013)
  • [7] J. Bourgain, An averaging result for $ l^{1}$-sequences and applications to weakly conditionally compact sets in $ L^{1}_{X}$, Israel J. Math. 32 (1979), no. 4, 289-298. MR 571083 (81i:46021), https://doi.org/10.1007/BF02760458
  • [8] Jean Bourgain, New classes of $ {\mathcal {L}}^{p}$-spaces, Lecture Notes in Mathematics, vol. 889, Springer-Verlag, Berlin-New York, 1981. MR 639014 (83j:46028)
  • [9] J. Bourgain and F. Delbaen, A class of special $ {\mathcal {L}}_{\infty }$ spaces, Acta Math. 145 (1980), no. 3-4, 155-176. MR 590288 (82h:46023), https://doi.org/10.1007/BF02414188
  • [10] Pilar Cembranos and José Mendoza, Banach spaces of vector-valued functions, Lecture Notes in Mathematics, vol. 1676, Springer-Verlag, Berlin, 1997. MR 1489231 (99f:46049)
  • [11] J. Diestel and J. J. Uhl Jr., Vector measures, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis; Mathematical Surveys, No. 15. MR 0453964 (56 #12216)
  • [12] P. G. Dodds and F. A. Sukochev, RUC-decompositions in symmetric operator spaces, Integral Equations Operator Theory 29 (1997), no. 3, 269-287. MR 1477320 (98m:46008), https://doi.org/10.1007/BF01320701
  • [13] P. G. Dodds, E. M. Semenov, and F. A. Sukochev, RUC systems in rearrangement invariant spaces, Studia Math. 151 (2002), no. 2, 161-173. MR 1917951 (2003f:46041), https://doi.org/10.4064/sm151-2-4
  • [14] John Hancock Elton, Weakly null normalized sequences in Banach spaces, ProQuest LLC, Ann Arbor, MI, 1978. Thesis (Ph.D.)-Yale University. MR 2628434
  • [15] D. J. H. Garling and N. Tomczak-Jaegermann, RUC-systems and Besselian systems in Banach spaces, Math. Proc. Cambridge Philos. Soc. 106 (1989), no. 1, 163-168. MR 994087 (90i:46021), https://doi.org/10.1017/S0305004100068055
  • [16] W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), no. 4, 851-874. MR 1201238 (94k:46021), https://doi.org/10.2307/2152743
  • [17] J. Hájek and A. Rényi, Generalization of an inequality of Kolmogorov, Acta Math. Acad. Sci. Hungar. 6 (1955), 281-283 (English, with Russian summary). MR 0076207 (17,864a)
  • [18] Richard Haydon, Subspaces of the Bourgain-Delbaen space, Studia Math. 139 (2000), no. 3, 275-293. MR 1762585 (2001g:46029)
  • [19] Robert C. James, Bases and reflexivity of Banach spaces, Ann. of Math. (2) 52 (1950), 518-527. MR 0039915 (12,616b)
  • [20] William B. Johnson, Bernard Maurey, and Gideon Schechtman, Weakly null sequences in $ L_1$, J. Amer. Math. Soc. 20 (2007), no. 1, 25-36 (electronic). MR 2257395 (2007g:46019), https://doi.org/10.1090/S0894-0347-06-00548-0
  • [21] W. B. Johnson and G. Schechtman, Martingale inequalities in rearrangement invariant function spaces, Israel J. Math. 64 (1988), no. 3, 267-275 (1989). MR 995572 (90g:60048), https://doi.org/10.1007/BF02882423
  • [22] Jean-Pierre Kahane, Some random series of functions, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 5, Cambridge University Press, Cambridge, 1985. MR 833073 (87m:60119)
  • [23] N. J. Kalton and N. T. Peck, Twisted sums of sequence spaces and the three space problem, Trans. Amer. Math. Soc. 255 (1979), 1-30. MR 542869 (82g:46021), https://doi.org/10.2307/1998164
  • [24] K. S. Kazaryan and E. M. Semenov, RUC-bases and the Olevskiĭ system, Mat. Zametki 75 (2004), no. 4, 566-579 (Russian, with Russian summary); English transl., Math. Notes 75 (2004), no. 3-4, 530-541. MR 2068766 (2005f:46059), https://doi.org/10.1023/B:MATN.0000023334.07767.e7
  • [25] S. Kwapień, On Banach spaces containing $ c_{0}$, Studia Math. 52 (1974), 187-188. A supplement to the paper by J. Hoffmann-Jørgensen: ``Sums of independent Banach space valued random variables'' (Studia Math. 52 (1974), 159-186). MR 0356156 (50 #8627)
  • [26] Michel Ledoux and Michel Talagrand, Probability in Banach spaces: Isoperimetry and processes, Reprint of the 1991 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2011. MR 2814399 (2012c:60015)
  • [27] Pascal Lefèvre, Topological dichotomy and unconditional convergence, Serdica Math. J. 25 (1999), no. 4, 297-310. MR 1742770 (2000m:46016)
  • [28] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in $ L_{p}$-spaces and their applications, Studia Math. 29 (1968), 275-326. MR 0231188 (37 #6743)
  • [29] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I: Sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92, Springer-Verlag, Berlin-New York, 1977. MR 0500056 (58 #17766)
  • [30] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II: Function spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. MR 540367 (81c:46001)
  • [31] Michel Loève, Probability theory, 2nd ed. The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-New York-London, 1960. MR 0123342 (23 #A670)
  • [32] B. Maurey and H. P. Rosenthal, Normalized weakly null sequence with no unconditional subsequence, Studia Math. 61 (1977), no. 1, 77-98. MR 0438091 (55 #11010)
  • [33] E. Odell, On Schreier unconditional sequences, Banach spaces (Mérida, 1992) Contemp. Math., vol. 144, Amer. Math. Soc., Providence, RI, 1993, pp. 197-201. MR 1209461 (94f:46016), https://doi.org/10.1090/conm/144/1209461
  • [34] H. Witvliet, Unconditional Schauder decompositions and multiplier theorems. Ph.D. thesis, Delft University of Technology, 2000.
  • [35] P. Wojtaszczyk, Every separable Banach space containing $ c_0$ has an RUC system, Texas Functional Analysis Seminar 1985-1986 (Austin, TX, 1985-1986), Longhorn Notes, Univ. Texas, Austin, TX, 1986, pp. 37-39. MR 1017040 (90j:46018)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 46B09, 46B15

Retrieve articles in all journals with MSC (2010): 46B09, 46B15


Additional Information

J. Lopez-Abad
Affiliation: Instituto de Ciencias Matemáticas (ICMAT), CSIC-UAM-UC3M-UCM, C/Nicolás Cabrera 13-15, Campus Cantoblanco, UAM 28049 Madrid, Spain; Instituto de Matemática e Estatística - IME/USP, Rua do Matão, 1010 - Cidade Universitária, São Paulo - SP, 05508-090, Brasil
Email: abad@icmat.es

P. Tradacete
Affiliation: Department of Mathematics, Universidad Carlos III de Madrid, 28911, Leganés, Madrid, Spain
Email: ptradace@math.uc3m.es

DOI: https://doi.org/10.1090/tran/6636
Keywords: Unconditional basis, random unconditional convergence.
Received by editor(s): September 23, 2014
Received by editor(s) in revised form: December 19, 2014
Published electronically: March 18, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society