Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

The predual and John-Nirenberg inequalities on generalized BMO martingale spaces


Authors: Yong Jiao, Lian Wu, Anming Yang and Rui Yi
Journal: Trans. Amer. Math. Soc. 369 (2017), 537-553
MSC (2010): Primary 60G46; Secondary 60G42
DOI: https://doi.org/10.1090/tran/6657
Published electronically: April 14, 2016
MathSciNet review: 3557784
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we introduce the generalized BMO martingale spaces by stopping time sequences, which enable us to characterize the dual spaces of martingale Hardy-Lorentz spaces $ H_{p,q}^s$ for $ 0<p\leq 1, 1<q<\infty $. Moreover, by duality we obtain a John-Nirenberg theorem for the generalized BMO martingale spaces when the stochastic basis is regular. We also extend the boundedness of fractional integrals to martingale Hardy-Lorentz spaces.


References [Enhancements On Off] (What's this?)

  • [1] Wael Abu-Shammala and Alberto Torchinsky, The Hardy-Lorentz spaces $ H^{p,q}(\mathbb{R}^n)$, Studia Math. 182 (2007), no. 3, 283-294. MR 2360632 (2008k:46083), https://doi.org/10.4064/sm182-3-7
  • [2] Richard F. Bass, Probabilistic techniques in analysis, Probability and its Applications (New York), Springer-Verlag, New York, 1995. MR 1329542 (96e:60001)
  • [3] Colin Bennett and Robert Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR 928802 (89e:46001)
  • [4] J.-A. Chao and H. Ombe, Commutators on dyadic martingales, Proc. Japan Acad. Ser. A Math. Sci. 61 (1985), no. 2, 35-38. MR 798032 (86k:60078)
  • [5] John B. Conway, A course in functional analysis, Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1985. MR 768926 (86h:46001)
  • [6] Charles Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), 587-588. MR 0280994 (43 #6713)
  • [7] R. Fefferman, Bounded mean oscillation on the polydisk, Ann. of Math. (2) 110 (1979), no. 2, 395-406. MR 549492 (81c:32016), https://doi.org/10.2307/1971231
  • [8] Adriano M. Garsia, Martingale inequalities: Seminar notes on recent progress, W. A. Benjamin, Inc., Reading, Mass.-London-Amsterdam, 1973. Mathematics Lecture Notes Series. MR 0448538 (56 #6844)
  • [9] Loukas Grafakos, Classical Fourier analysis, 2nd ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2008. MR 2445437 (2011c:42001)
  • [10] Yong Jiao, Lihua Peng, and Peide Liu, Atomic decompositions of Lorentz martingale spaces and applications, J. Funct. Spaces Appl. 7 (2009), no. 2, 153-166. MR 2541232 (2010j:60101), https://doi.org/10.1155/2009/465079
  • [11] Yong Jiao, Lian Wu, and Mihai Popa, Operator-valued martingale transforms in rearrangement invariant spaces and applications, Sci. China Math. 56 (2013), no. 4, 831-844. MR 3034845, https://doi.org/10.1007/s11425-013-4570-8
  • [12] Yong Jiao, Guangheng Xie, and Dejian Zhou, Dual spaces and John-Nirenberg inequalities of martingale Hardy-Lorentz-Karamata spaces, Q. J. Math. 66 (2015), no. 2, 605-623. MR 3356840, https://doi.org/10.1093/qmath/hav003
  • [13] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. MR 0131498 (24 #A1348)
  • [14] Peide Liu and Youliang Hou, Atomic decompositions of Banach-space-valued martingales, Sci. China Ser. A 42 (1999), no. 1, 38-47. MR 1692138 (2000f:60067), https://doi.org/10.1007/BF02872048
  • [15] Rui Lin Long, Martingale spaces and inequalities, Peking University Press, Beijing; Friedr. Vieweg & Sohn, Braunschweig, 1993. MR 1224450 (94j:60087)
  • [16] Tao Ma and Peide Liu, Atomic decompositions and duals of weak Hardy spaces of $ B$-valued martingales, Acta Math. Sci. Ser. B Engl. Ed. 29 (2009), no. 5, 1439-1452. MR 2567127 (2011e:60090), https://doi.org/10.1016/S0252-9602(09)60116-8
  • [17] Takashi Miyamoto, Eiichi Nakai, and Gaku Sadasue, Martingale Orlicz-Hardy spaces, Math. Nachr. 285 (2012), no. 5-6, 670-686. MR 2902839, https://doi.org/10.1002/mana.201000109
  • [18] Eiichi Nakai and Gaku Sadasue, Martingale Morrey-Campanato spaces and fractional integrals, J. Funct. Spaces Appl. (2012), Art. ID 673929, 29. MR 2944703
  • [19] Karl Endel Petersen, Brownian motion, Hardy spaces and bounded mean oscillation, Cambridge University Press, Cambridge-New York-Melbourne, 1977. London Mathematical Society Lecture Note Series, No. 28. MR 0651556 (58 #31383)
  • [20] Gaku Sadasue, Fractional integrals on martingale Hardy spaces for $ 0<p\le 1$, Mem. Osaka Kyoiku Univ. Ser. III Nat. Sci. Appl. Sci. 60 (2011), no. 1, 1-7 (English, with English and Japanese summaries). MR 2963747
  • [21] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095 (44 #7280)
  • [22] F. Weisz, Martingale Hardy spaces for $ 0<p\leq 1$, Probab. Theory Related Fields 84 (1990), no. 3, 361-376. MR 1035662 (91d:60107), https://doi.org/10.1007/BF01197890
  • [23] Ferenc Weisz, Martingale Hardy spaces and their applications in Fourier analysis, Lecture Notes in Mathematics, vol. 1568, Springer-Verlag, Berlin, 1994. MR 1320508 (96m:60108)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 60G46, 60G42

Retrieve articles in all journals with MSC (2010): 60G46, 60G42


Additional Information

Yong Jiao
Affiliation: School of Mathematics and Statistics, Central South University, Changsha 410085, People’s Republic of China
Email: jiaoyong@csu.edu.cn

Lian Wu
Affiliation: School of Mathematics and Statistics, Central South University, Changsha 410085, People’s Republic of China

Anming Yang
Affiliation: School of Mathematics and Statistics, Central South University, Changsha 410085, People’s Republic of China

Rui Yi
Affiliation: School of Mathematics and Statistics, Central South University, Changsha 410085, People’s Republic of China

DOI: https://doi.org/10.1090/tran/6657
Keywords: Predual, John-Nirenberg inequalities, generalized BMO spaces, martingale Hardy-Lorentz space, fractional integral
Received by editor(s): August 20, 2014
Received by editor(s) in revised form: January 9, 2015
Published electronically: April 14, 2016
Additional Notes: The first author was supported by NSFC (11471337), Hunan Provincial Natural Science Foundation(14JJ1004) and The International Postdoctoral Exchange Fellowship Program
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society