Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Interpolation sets and the size of quotients of function spaces on a locally compact group


Authors: Mahmoud Filali and Jorge Galindo
Journal: Trans. Amer. Math. Soc. 369 (2017), 575-603
MSC (2010): Primary 22D15; Secondary 43A46, 43A15, 43A60
DOI: https://doi.org/10.1090/tran6662
Published electronically: March 9, 2016
MathSciNet review: 3557786
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We devise a fairly general method for estimating the size of quotients between algebras of functions on a locally compact group. This method is based on the concept of interpolation set we introduced and studied recently and unifies the approaches followed by many authors to obtain particular cases.

We find in this way that there is a linear isometric copy of $ \ell _\infty (\kappa )$ in each of the following quotient spaces:

-
$ \mathscr {WAP}_0(G)/C_0(G)$ whenever $ G$ contains a subset $ X$ that is an $ E$-set (see the definition in the paper) and $ \kappa =\kappa (X)$ is the minimal number of compact sets required to cover $ X$. In particular, $ \kappa =\kappa (G)$ when $ G$ is an $ SIN$-group.
-
$ \mathscr {WAP}(G)/\mathscr {B}(G)$, when $ G$ is any locally compact group and $ \kappa =\kappa (Z(G))$ and $ Z(G)$ is the centre of $ G$, or when $ G$ is either an $ IN$-group or a nilpotent group and $ \kappa =\kappa (G)$.
-
$ \mathscr {WAP}_0(G)/\mathscr {B}_0(G)$, when $ G$ and $ \kappa $ are as in the foregoing item.
-
$ \mathscr {CB}(G)/\mathscr {LUC}(G)$, when $ G$ is any locally compact group that is neither compact nor discrete and $ \kappa =\kappa (G)$.

References [Enhancements On Off] (What's this?)

  • [1] Ofelia T. Alas, Topological groups and uniform continuity, Portugal. Math. 30 (1971), 137-143. MR 0302811 (46 #1954)
  • [2] Alexander Arhangelskii and Mikhail Tkachenko, Topological groups and related structures, Atlantis Studies in Mathematics, vol. 1, Atlantis Press, Paris; World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. MR 2433295 (2010i:22001)
  • [3] J. W. Baker and R. J. Butcher, The Stone-Čech compactification of a topological semigroup, Math. Proc. Cambridge Philos. Soc. 80 (1976), no. 1, 103-107. MR 0409711 (53 #13463)
  • [4] J. W. Baker and M. Filali, On the analogue of Veech's theorem in the WAP-compactification of a locally compact group, Semigroup Forum 65 (2002), no. 1, 107-112. MR 1903557 (2003c:22008), https://doi.org/10.1007/s002330010084
  • [5] John F. Berglund, Hugo D. Junghenn, and Paul Milnes, Analysis on semigroups, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1989. Function spaces, compactifications, representations; A Wiley-Interscience Publication. MR 999922 (91b:43001)
  • [6] Ahmed Bouziad and Mahmoud Filali, On the size of quotients of function spaces on a topological group, Studia Math. 202 (2011), no. 3, 243-259. MR 2771653 (2012c:43004), https://doi.org/10.4064/sm202-3-3
  • [7] A. Bouziad and M. Filali, The Stone-Čech compactification of a topological group as a semigroup and the SIN property, Houston J. Math. 38 (2012), no. 4, 1329-1341. MR 3019039
  • [8] Talin Budak, Nilgün Işık, and John Pym, Minimal determinants of topological centres for some algebras associated with locally compact groups, Bull. Lond. Math. Soc. 43 (2011), no. 3, 495-506. MR 2820139 (2012f:43003), https://doi.org/10.1112/blms/bdq116
  • [9] R. B. Burckel, Weakly almost periodic functions on semigroups, Gordon and Breach Science Publishers, New York-London-Paris, 1970. MR 0263963 (41 #8562)
  • [10] Ching Chou, Weakly almost periodic functions and almost convergent functions on a group, Trans. Amer. Math. Soc. 206 (1975), 175-200. MR 0394062 (52 #14868)
  • [11] Ching Chou, Uniform closures of Fourier-Stieltjes algebras, Proc. Amer. Math. Soc. 77 (1979), no. 1, 99-102. MR 539638 (80i:43007), https://doi.org/10.2307/2042723
  • [12] Ching Chou, Minimally weakly almost periodic groups, J. Funct. Anal. 36 (1980), no. 1, 1-17. MR 568972 (81f:43009), https://doi.org/10.1016/0022-1236(80)90103-2
  • [13] Ching Chou, Weakly almost periodic functions and Fourier-Stieltjes algebras of locally compact groups, Trans. Amer. Math. Soc. 274 (1982), no. 1, 141-157. MR 670924 (84a:43008), https://doi.org/10.2307/1999501
  • [14] Ching Chou, Weakly almost periodic functions and thin sets in discrete groups, Trans. Amer. Math. Soc. 321 (1990), no. 1, 333-346. MR 984855 (90m:43023), https://doi.org/10.2307/2001605
  • [15] Paul Civin and Bertram Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847-870. MR 0143056 (26 #622)
  • [16] W. W. Comfort and Kenneth A. Ross, Pseudocompactness and uniform continuity in topological groups, Pacific J. Math. 16 (1966), 483-496. MR 0207886 (34 #7699)
  • [17] H. G. Dales and A. T.-M. Lau, The second duals of Beurling algebras, Mem. Amer. Math. Soc. 177 (2005), no. 836, vi+191. MR 2155972 (2006k:43002), https://doi.org/10.1090/memo/0836
  • [18] Stephen William Drury, Sur les ensembles de Sidon, C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A162-A163 (French). MR 0271647 (42 #6530)
  • [19] Charles F. Dunkl and Donald E. Ramirez, Topics in harmonic analysis, Appleton-Century-Crofts [Meredith Corporation], New York, 1971. Appleton-Century Mathematics Series. MR 0454515 (56 #12766)
  • [20] Heneri A. M. Dzinotyiweyi, Nonseparability of quotient spaces of function algebras on topological semigroups, Trans. Amer. Math. Soc. 272 (1982), no. 1, 223-235. MR 656487 (84h:43016), https://doi.org/10.2307/1998957
  • [21] Ryszard Engelking, General topology, PWN--Polish Scientific Publishers, Warsaw, 1977. Translated from the Polish by the author; Monografie Matematyczne, Tom 60. [Mathematical Monographs, Vol. 60]. MR 0500780 (58 #18316b)
  • [22] Mahmoud Filali, $ t$-sets and some algebraic properties in $ \beta S$ and in $ l_\infty (S)^\ast $, Semigroup Forum 65 (2002), no. 2, 285-300. MR 1911731 (2003d:22003), https://doi.org/10.1007/s002330010111
  • [23] M. Filali, On the actions of a locally compact group on some of its semigroup compactifications, Math. Proc. Cambridge Philos. Soc. 143 (2007), no. 1, 25-39. MR 2340973 (2009d:22004), https://doi.org/10.1017/S0305004107000242
  • [24] M. Filali and J. Galindo, Approximable $ {\mathcal {WAP}}$- and $ {\mathcal {LUC}}$-interpolation sets, Adv. Math. 233 (2013), 87-114. MR 2995666, https://doi.org/10.1016/j.aim.2012.09.018
  • [25] M. Filali - J. Galindo, Algebraic structure of semigroup compactifications: Pym's and Veech's Theorems and strongly prime points, Preprint, 2015.
  • [26] M. Filali - J. Galindo, Extreme non-Arens regularity of the group algebra, Preprint, 2013.
  • [27] M. Filali and J. S. Pym, Right cancellation in the $ \mathcal {L}\mathcal {U}\mathcal {C}$-compactification of a locally compact group, Bull. London Math. Soc. 35 (2003), no. 1, 128-134. MR 1935082 (2003i:22006), https://doi.org/10.1112/S0024609302001649
  • [28] Mahmoud Filali and Tero Vedenjuoksu, The Stone-Čech compactification of a topological group and the $ \beta $-extension property, Houston J. Math. 36 (2010), no. 2, 477-488. MR 2661257 (2011g:22006)
  • [29] J. Galindo,
    On group and semigroup compactifications of topological groups.
    Manuscript in preparation.
  • [30] T. E. Gantner, Some corollaries to the metrization lemma, Amer. Math. Monthly 76 (1969), 45-47. MR 0238257 (38 #6533)
  • [31] Colin C. Graham and Kathryn E. Hare, Interpolation and Sidon sets for compact groups, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, New York, 2013. MR 3025283
  • [32] Edmond E. Granirer, Exposed points of convex sets and weak sequential convergence, American Mathematical Society, Providence, R.I., 1972. Applications to invariant means, to existence of invariant measures for a semigroup of Markov operators etc. . ; Memoirs of the American Mathematical Society, No. 123. MR 0365090 (51 #1343)
  • [33] Edmond E. Granirer, The radical of $ L^{\infty }(G)^{\ast } $, Proc. Amer. Math. Soc. 41 (1973), 321-324. MR 0326302 (48 #4646)
  • [34] Siegfried Grosser and Martin Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math. 246 (1971), 1-40. MR 0284541 (44 #1766)
  • [35] S. L. Gulick, Commutativity and ideals in the biduals of topological algebras, Pacific J. Math. 18 (1966), 121-137. MR 0194912 (33 #3118)
  • [36] Kathryn E. Hare and L. Thomas Ramsey, The ubiquity of Sidon sets that are not $ I_0$, Preprint, 2016. Available at: http://arxiv.org/pdf/1602.04241.pdf
  • [37] E. Hewitt - K. A. Ross, Abstract harmonic analysis I, Springer-Verlag, Berlin, (1963).
  • [38] Neil Hindman and Dona Strauss, Algebra in the Stone-Čech compactification, de Gruyter Expositions in Mathematics, vol. 27, Walter de Gruyter & Co., Berlin, 1998. Theory and applications. MR 1642231 (99j:54001)
  • [39] Thomas Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded. MR 1940513 (2004g:03071)
  • [40] M. Katětov, On real-valued functions in topological spaces, Fund. Math. 38 (1951), 85-91. MR 0050264 (14,304a)
  • [41] M. Katĕtov, Correction to ``On real-valued functions in topological spaces'' (Fund. Math. 38 (1951), pp. 85-91), Fund. Math. 40, (1953) 203-205.
  • [42] Anthony To Ming Lau and Viktor Losert, On the second conjugate algebra of $ L_1(G)$ of a locally compact group, J. London Math. Soc. (2) 37 (1988), no. 3, 464-470. MR 939122 (89e:43007), https://doi.org/10.1112/jlms/s2-37.3.464
  • [43] Anthony To Ming Lau and John Pym, The topological centre of a compactification of a locally compact group, Math. Z. 219 (1995), no. 4, 567-579. MR 1343662 (96e:22010), https://doi.org/10.1007/BF02572381
  • [44] Anthony To Ming Lau and Ali Ülger, Topological centers of certain dual algebras, Trans. Amer. Math. Soc. 348 (1996), no. 3, 1191-1212. MR 1322952 (96h:43003), https://doi.org/10.1090/S0002-9947-96-01499-7
  • [45] K. de Leeuw and I. Glicksberg, Almost periodic functions on semigroups, Acta Math. 105 (1961), 99-140. MR 0131785 (24 #A1633)
  • [46] K. de Leeuw and I. Glicksberg, The decomposition of certain group representations, J. Analyse Math. 15 (1965), 135-192. MR 0186755 (32 #4211)
  • [47] B. H. Neumann, Groups covered by finitely many cosets, Publ. Math. Debrecen 3 (1954), 227-242 (1955). MR 0072138 (17,234f)
  • [48] John Pym, A note on $ G^{\mathcal {LUC}}$ and Veech's theorem, Semigroup Forum 59 (1999), no. 2, 171-174. MR 1847282 (2002g:22005), https://doi.org/10.1007/s002339900039
  • [49] Donald E. Ramirez, Weakly almost periodic functions and Fourier-Stieltjes transforms, Proc. Amer. Math. Soc. 19 (1968), 1087-1088. MR 0232162 (38 #488)
  • [50] Haskell P. Rosenthal, On injective Banach spaces and the spaces $ L^{\infty }(\mu )$ for finite measure $ \mu $, Acta Math. 124 (1970), 205-248. MR 0257721 (41 #2370)
  • [51] Walter Rudin, Weak almost periodic functions and Fourier-Stieltjes transforms, Duke Math. J. 26 (1959), 215-220. MR 0102705 (21 #1492)
  • [52] W. A. F. Ruppert, On weakly almost periodic sets, Semigroup Forum 32 (1985), no. 3, 267-281. MR 815876 (87d:43007), https://doi.org/10.1007/BF02575544
  • [53] Wolfgang Ruppert, Compact semitopological semigroups: an intrinsic theory, Lecture Notes in Mathematics, vol. 1079, Springer-Verlag, Berlin, 1984. MR 762985 (86e:22001)
  • [54] William A. Veech, Topological dynamics, Bull. Amer. Math. Soc. 83 (1977), no. 5, 775-830. MR 0467705 (57 #7558)
  • [55] William A. Veech, Weakly almost periodic functions on semisimple Lie groups, Monatsh. Math. 88 (1979), no. 1, 55-68. MR 550072 (81b:22012), https://doi.org/10.1007/BF01305857
  • [56] N. J. Young, The irregularity of multiplication in group algebras, Quart J. Math. Oxford Ser. (2) 24 (1973), 59-62. MR 0320756 (47 #9290)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 22D15, 43A46, 43A15, 43A60

Retrieve articles in all journals with MSC (2010): 22D15, 43A46, 43A15, 43A60


Additional Information

Mahmoud Filali
Affiliation: Department of Mathematical Sciences, University of Oulu, Oulu, Finland
Email: mfilali@cc.oulu.fi

Jorge Galindo
Affiliation: Instituto Universitario de Matemáticas y Aplicaciones (IMAC), Universidad Jaume I, E-12071, Castellón, Spain
Email: jgalindo@mat.uji.es

DOI: https://doi.org/10.1090/tran6662
Keywords: Almost periodic functions, Fourier-Stieltjes algebra, weakly almost periodic, semigroup compactification, almost periodic compactification, interpolation sets
Received by editor(s): March 27, 2014
Received by editor(s) in revised form: November 5, 2014, and January 10, 2015
Published electronically: March 9, 2016
Additional Notes: The research of the second author was partially supported by the Spanish Ministry of Science (including FEDER funds), grant MTM2011-23118 and Fundació Caixa Castelló-Bancaixa, grant number P1$⋅$1B2014-35.
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society