Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Orbifolds of symplectic fermion algebras


Authors: Thomas Creutzig and Andrew R. Linshaw
Journal: Trans. Amer. Math. Soc. 369 (2017), 467-494
MSC (2010): Primary 13A50, 17B69; Secondary 11F22, 17B65
DOI: https://doi.org/10.1090/tran6664
Published electronically: May 6, 2016
MathSciNet review: 3557781
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a systematic study of the orbifolds of the rank $ n$ symplectic fermion algebra $ \mathcal {A}(n)$, which has full automorphism group $ Sp(2n)$. First, we show that $ \mathcal {A}(n)^{Sp(2n)}$ and $ \mathcal {A}(n)^{GL(n)}$ are $ \mathcal {W}$-algebras of type
$ \mathcal {W}(2,4,\dots , 2n)$ and $ \mathcal {W}(2,3,\dots , 2n+1)$, respectively. Using these results, we find minimal strong finite generating sets for $ \mathcal {A}(mn)^{Sp(2n)}$ and $ \mathcal {A}(mn)^{GL(n)}$ for all $ m,n\geq 1$. We compute the characters of the irreducible representations of $ \mathcal {A}(mn)^{Sp(2n)\times SO(m)}$ and $ \mathcal {A}(mn)^{GL(n)\times GL(m)}$ appearing inside $ \mathcal {A}(mn)$, and we express these characters using partial theta functions. Finally, we give a complete solution to the Hilbert problem for $ \mathcal {A}(n)$; we show that for any reductive group $ G$ of automorphisms, $ \mathcal {A}(n)^G$ is strongly finitely generated


References [Enhancements On Off] (What's this?)

  • [A] Toshiyuki Abe, A $ {\mathbb{Z}}_2$-orbifold model of the symplectic fermionic vertex operator superalgebra, Math. Z. 255 (2007), no. 4, 755-792. MR 2274534 (2007k:17036), https://doi.org/10.1007/s00209-006-0048-5
  • [ABD] Toshiyuki Abe, Geoffrey Buhl, and Chongying Dong, Rationality, regularity, and $ C_2$-cofiniteness, Trans. Amer. Math. Soc. 356 (2004), no. 8, 3391-3402 (electronic). MR 2052955 (2005c:17041), https://doi.org/10.1090/S0002-9947-03-03413-5
  • [AC] Claudia Alfes and Thomas Creutzig, The mock modular data of a family of superalgebras, Proc. Amer. Math. Soc. 142 (2014), no. 7, 2265-2280. MR 3195752, https://doi.org/10.1090/S0002-9939-2014-11959-9
  • [AM] Dražen Adamović and Antun Milas, On the triplet vertex algebra $ \mathcal {W}(p)$, Adv. Math. 217 (2008), no. 6, 2664-2699. MR 2397463 (2009e:17050), https://doi.org/10.1016/j.aim.2007.11.012
  • [ArI] Tomoyuki Arakawa, Rationality of Bershadsky-Polyakov vertex algebras, Comm. Math. Phys. 323 (2013), no. 2, 627-633. MR 3096533, https://doi.org/10.1007/s00220-013-1780-4
  • [ArII] Tomoyuki Arakawa, Rationality of $ W$-algebras: principal nilpotent cases, Ann. of Math. (2) 182 (2015), no. 2, 565-604. MR 3418525
  • [BK] Bojko Bakalov and Victor G. Kac, Field algebras, Int. Math. Res. Not. 3 (2003), 123-159. MR 1932531 (2003k:17033), https://doi.org/10.1155/S1073792803204232
  • [B] Richard E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), no. 10, 3068-3071. MR 843307 (87m:17033), https://doi.org/10.1073/pnas.83.10.3068
  • [BCR] Kathrin Bringmann, Thomas Creutzig, and Larry Rolen, Negative index Jacobi forms and quantum modular forms, Res. Math. Sci. 1 (2014), Art. 11, 32. MR 3375646, https://doi.org/10.1186/s40687-014-0011-8
  • [BM] K. Bringmann and A. Milas, $ W$-algebras, False theta series and quantum modular forms, Part I, submitted.
  • [CL] T. Creutzig and A. Linshaw, Cosets of affine vertex algebras inside larger structures, arXiv:1407.8512.
  • [CM] Thomas Creutzig and Antun Milas, False theta functions and the Verlinde formula, Adv. Math. 262 (2014), 520-545. MR 3228436, https://doi.org/10.1016/j.aim.2014.05.018
  • [CMW] T. Creutzig, A. Milas and S. Wood, On regularised quantum dimensions of the singlet vertex operator algebra and false theta functions, arXiv:1411.3282 [math.QA].
  • [CR] Thomas Creutzig and David Ridout, Logarithmic conformal field theory: beyond an introduction, J. Phys. A 46 (2013), no. 49, 494006, 72. MR 3146012, https://doi.org/10.1088/1751-8113/46/49/494006
  • [CW] Shun-Jen Cheng and Weiqiang Wang, Dualities and representations of Lie superalgebras, Graduate Studies in Mathematics, vol. 144, American Mathematical Society, Providence, RI, 2012. MR 3012224
  • [DSK] Alberto De Sole and Victor G. Kac, Finite vs affine $ W$-algebras, Japan J. Math. 1 (2006), no. 1, 137-261. MR 2261064 (2008b:17044), https://doi.org/10.1007/s11537-006-0505-2
  • [D] Chongying Dong, Vertex algebras associated with even lattices, J. Algebra 161 (1993), no. 1, 245-265. MR 1245855 (94j:17023), https://doi.org/10.1006/jabr.1993.1217
  • [DLMI] Chongying Dong, Haisheng Li, and Geoffrey Mason, Compact automorphism groups of vertex operator algebras, Internat. Math. Res. Notices 18 (1996), 913-921. MR 1420556 (98a:17044), https://doi.org/10.1155/S1073792896000566
  • [DLMII] Chongying Dong, Haisheng Li, and Geoffrey Mason, Regularity of rational vertex operator algebras, Adv. Math. 132 (1997), no. 1, 148-166. MR 1488241 (98m:17037), https://doi.org/10.1006/aima.1997.1681
  • [F] Michael A. I. Flohr, On modular invariant partition functions of conformal field theories with logarithmic operators, Internat. J. Modern Phys. A 11 (1996), no. 22, 4147-4172. MR 1403683 (97h:81196), https://doi.org/10.1142/S0217751X96001954
  • [FBZ] Edward Frenkel and David Ben-Zvi, Vertex algebras and algebraic curves, Mathematical Surveys and Monographs, vol. 88, American Mathematical Society, Providence, RI, 2001. MR 1849359 (2003f:17036)
  • [FGST] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, and I. Yu. Tipunin, Logarithmic extensions of minimal models: characters and modular transformations, Nuclear Phys. B 757 (2006), no. 3, 303-343. MR 2275182 (2007i:81110), https://doi.org/10.1016/j.nuclphysb.2006.09.019
  • [FKW] Edward Frenkel, Victor Kac, and Minoru Wakimoto, Characters and fusion rules for $ W$-algebras via quantized Drinfeld-Sokolov reduction, Comm. Math. Phys. 147 (1992), no. 2, 295-328. MR 1174415 (93i:17029)
  • [FLM] Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press, Inc., Boston, MA, 1988. MR 996026 (90h:17026)
  • [FZ] Igor B. Frenkel and Yongchang Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1992), no. 1, 123-168. MR 1159433 (93g:17045), https://doi.org/10.1215/S0012-7094-92-06604-X
  • [FMS] Daniel Friedan, Emil Martinec, and Stephen Shenker, Conformal invariance, supersymmetry and string theory, Nuclear Phys. B 271 (1986), no. 1, 93-165. MR 845945 (87i:81202), https://doi.org/10.1016/0550-3213(86)90356-1
  • [GKO] P. Goddard, A. Kent, and D. Olive, Virasoro algebras and coset space models, Phys. Lett. B 152 (1985), no. 1-2, 88-92. MR 778819 (86m:81092), https://doi.org/10.1016/0370-2693(85)91145-1
  • [G] Maria Gorelik, Weyl denominator identity for finite-dimensional Lie superalgebras, Highlights in Lie algebraic methods, Progr. Math., vol. 295, Birkhäuser/Springer, New York, 2012, pp. 167-188. MR 2866851, https://doi.org/10.1007/978-0-8176-8274-3_7
  • [HI] David Hilbert, Ueber die Theorie der algebraischen Formen, Math. Ann. 36 (1890), no. 4, 473-534 (German). MR 1510634, https://doi.org/10.1007/BF01208503
  • [HII] David Hilbert, Ueber die vollen Invariantensysteme, Math. Ann. 42 (1893), no. 3, 313-373 (German). MR 1510781, https://doi.org/10.1007/BF01444162
  • [K] Victor Kac, Vertex algebras for beginners, 2nd ed., University Lecture Series, vol. 10, American Mathematical Society, Providence, RI, 1998. MR 1651389 (99f:17033)
  • [KI] H. G. Kausch, Extended conformal algebras generated by a multiplet of primary fields, Phys. Lett. B 259 (1991), no. 4, 448-455. MR 1107489 (92c:81169), https://doi.org/10.1016/0370-2693(91)91655-F
  • [KII] Horst G. Kausch, Symplectic fermions, Nuclear Phys. B 583 (2000), no. 3, 513-541. MR 1779271 (2001i:81249), https://doi.org/10.1016/S0550-3213(00)00295-9
  • [KP] Victor G. Kac and Dale H. Peterson, Spin and wedge representations of infinite-dimensional Lie algebras and groups, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), no. 6, 3308-3312. MR 619827 (82j:17019)
  • [KR] Victor Kac and Andrey Radul, Representation theory of the vertex algebra $ W_{1+\infty }$, Transform. Groups 1 (1996), no. 1-2, 41-70. MR 1390749 (97f:17033), https://doi.org/10.1007/BF02587735
  • [KRW] Victor Kac, Shi-Shyr Roan, and Minoru Wakimoto, Quantum reduction for affine superalgebras, Comm. Math. Phys. 241 (2003), no. 2-3, 307-342. MR 2013802 (2004h:17024), https://doi.org/10.1007/s00220-003-0926-1
  • [KWI] Victor G. Kac and Minoru Wakimoto, Integrable highest weight modules over affine superalgebras and Appell's function, Comm. Math. Phys. 215 (2001), no. 3, 631-682. MR 1810948 (2001j:17017), https://doi.org/10.1007/s002200000315
  • [KWII] Victor G. Kac and Minoru Wakimoto, Integrable highest weight modules over affine superalgebras and number theory, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 415-456. MR 1327543 (96j:11056)
  • [KWY] Victor G. Kac, Weiqiang Wang, and Catherine H. Yan, Quasifinite representations of classical Lie subalgebras of $ \mathcal {W}_{1+\infty }$, Adv. Math. 139 (1998), no. 1, 56-140. MR 1652526 (2000g:17039), https://doi.org/10.1006/aima.1998.1753
  • [LiI] Hai-Sheng Li, Local systems of vertex operators, vertex superalgebras and modules, J. Pure Appl. Algebra 109 (1996), no. 2, 143-195. MR 1387738 (97d:17016), https://doi.org/10.1016/0022-4049(95)00079-8
  • [LiII] Haisheng Li, Vertex algebras and vertex Poisson algebras, Commun. Contemp. Math. 6 (2004), no. 1, 61-110. MR 2048777 (2005d:17036), https://doi.org/10.1142/S0219199704001264
  • [LL] Bong H. Lian and Andrew R. Linshaw, Howe pairs in the theory of vertex algebras, J. Algebra 317 (2007), no. 1, 111-152. MR 2360143 (2008j:17055), https://doi.org/10.1016/j.jalgebra.2007.07.002
  • [LI] Andrew R. Linshaw, Invariant theory and the $ \mathcal {W}_{1+\infty }$ algebra with negative integral central charge, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 6, 1737-1768. MR 2835328 (2012k:81136), https://doi.org/10.4171/JEMS/292
  • [LII] Andrew R. Linshaw, A Hilbert theorem for vertex algebras, Transform. Groups 15 (2010), no. 2, 427-448. MR 2657448 (2011e:17046), https://doi.org/10.1007/s00031-010-9087-4
  • [LIII] Andrew R. Linshaw, Invariant theory and the Heisenberg vertex algebra, Int. Math. Res. Not. IMRN 17 (2012), 4014-4050. MR 2972547, https://doi.org/10.1093/imrn/rnr171
  • [LIV] Andrew R. Linshaw, Invariant subalgebras of affine vertex algebras, Adv. Math. 234 (2013), 61-84. MR 3003925, https://doi.org/10.1016/j.aim.2012.10.015
  • [LV] A. Linshaw, The structure of the Kac-Wang-Yan algebra, Comm. Math. Phys. DOI 10.1007/s00220-015-2502-x, published online 30 November 2015.
  • [LZ] Bong H. Lian and Gregg J. Zuckerman, Commutative quantum operator algebras, J. Pure Appl. Algebra 100 (1995), no. 1-3, 117-139. MR 1344847 (97a:17020), https://doi.org/10.1016/0022-4049(95)00053-Y
  • [M] M. Miyamoto, $ C_1$-cofiniteness and fusion products for vertex operator algebras, Conformal Field Theories and Tensor Categories, Proceedings of a Workshop Held at Beijing International Center for Mathematical Research, Mathematical Lectures from Peking University, pp. 271-279 (2014).
  • [SI] Alexander Sergeev, An analog of the classical invariant theory for Lie superalgebras. I, Michigan Math. J. 49 (2001), no. 1, 113-146, 147-168. MR 1827078 (2003d:17008), https://doi.org/10.1307/mmj/1008719038
  • [SII] Alexander Sergeev, An analog of the classical invariant theory for Lie superalgebras. II, Michigan Math. J. 49 (2001), no. 1, 113-146, 147-168. MR 1827078 (2003d:17008), https://doi.org/10.1307/mmj/1008719038
  • [TW] Akihiro Tsuchiya and Simon Wood, On the extended $ W$-algebra of type $ {\germ {sl}}_2$ at positive rational level, Int. Math. Res. Not. IMRN 14 (2015), 5357-5435. MR 3384444, https://doi.org/10.1093/imrn/rnu090
  • [WaI] Weiqiang Wang, Rationality of Virasoro vertex operator algebras, Internat. Math. Res. Notices 7 (1993), 197-211. MR 1230296 (94i:17034), https://doi.org/10.1155/S1073792893000212
  • [WaII] Weiqiang Wang, Duality in infinite-dimensional Fock representations, Commun. Contemp. Math. 1 (1999), no. 2, 155-199. MR 1696098 (2000j:17030), https://doi.org/10.1142/S0219199799000080
  • [We] Hermann Weyl, The classical groups: Their invariants and representations, Fifteenth printing, Princeton Landmarks in Mathematics, Princeton Paperbacks, University Press, Princeton, NJ, 1997. MR 1488158 (98k:01049)
  • [Zh] Yongchang Zhu, Vertex operator algebras, elliptic functions and modular forms, ProQuest LLC, Ann Arbor, MI, 1990. Thesis (Ph.D.)-Yale University. MR 2638807
  • [Za] Don Zagier, Quantum modular forms, Quanta of maths, Clay Math. Proc., vol. 11, Amer. Math. Soc., Providence, RI, 2010, pp. 659-675. MR 2757599 (2012a:11066)
  • [Zw] S. Zwegers, Mock theta functions, Ph.D. Thesis, Utrecht, 2002.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 13A50, 17B69, 11F22, 17B65

Retrieve articles in all journals with MSC (2010): 13A50, 17B69, 11F22, 17B65


Additional Information

Thomas Creutzig
Affiliation: Department of Mathematics, University of Alberta, Edmonton, Alberta T6G 2G1, Canada
Email: creutzig@ualberta.ca

Andrew R. Linshaw
Affiliation: Department of Mathematics, University of Denver, Denver, Colorado 80208
Email: andrew.linshaw@du.edu

DOI: https://doi.org/10.1090/tran6664
Received by editor(s): May 21, 2014
Received by editor(s) in revised form: January 8, 2015
Published electronically: May 6, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society