Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Non-splat singularity for the one-phase Muskat problem


Authors: Diego Córdoba and Tania Pernas-Castaño
Journal: Trans. Amer. Math. Soc. 369 (2017), 711-754
MSC (2010): Primary 35Q35
DOI: https://doi.org/10.1090/tran6688
Published electronically: April 14, 2016
MathSciNet review: 3557791
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For the water wave equations, the existence of splat singularities has been shown, i.e., the interface self-intersects along an arc in finite time. The aim of this paper is to show the absence of splat singularities for the incompressible fluid dynamics in porous media.


References [Enhancements On Off] (What's this?)

  • [1] Ángel Castro, Diego Córdoba, Charles Fefferman, and Francisco Gancedo, Breakdown of smoothness for the Muskat problem, Arch. Ration. Mech. Anal. 208 (2013), no. 3, 805-909. MR 3048596, https://doi.org/10.1007/s00205-013-0616-x
  • [2] Ángel Castro, Diego Córdoba, Charles Fefferman, and Francisco Gancedo, Splash singularities for the one-phase Muskat problem in stable regimes.
    arXiv:1311.7653v1, 2013.
  • [3] Angel Castro, Diego Córdoba, Charles Fefferman, Francisco Gancedo, and Javier Gómez-Serrano, Finite time singularities for the free boundary incompressible Euler equations, Ann. of Math. (2) 178 (2013), no. 3, 1061-1134. MR 3092476, https://doi.org/10.4007/annals.2013.178.3.6
  • [4] Ángel Castro, Diego Córdoba, Charles Fefferman, Francisco Gancedo, and María López-Fernández, Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves, Ann. of Math. (2) 175 (2012), no. 2, 909-948. MR 2993754, https://doi.org/10.4007/annals.2012.175.2.9
  • [5] C. H. Arthur Cheng, Rafael Granero-Belinchón, and Steve Shkoller, Well-posedness of the Muskat problem with $ {H}^{2}$ initial data.
    arXiv:14127737v1, 2014.
  • [6] Peter Constantin, Diego Córdoba, Francisco Gancedo, and Robert M. Strain, On the global existence for the Muskat problem, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 1, 201-227. MR 2998834, https://doi.org/10.4171/JEMS/360
  • [7] Antonio Córdoba and Diego Córdoba, A pointwise estimate for fractionary derivatives with applications to partial differential equations, Proc. Natl. Acad. Sci. USA 100 (2003), no. 26, 15316-15317. MR 2032097 (2004k:26009), https://doi.org/10.1073/pnas.2036515100
  • [8] Antonio Córdoba, Diego Córdoba, and Francisco Gancedo, Interface evolution: the Hele-Shaw and Muskat problems, Ann. of Math. (2) 173 (2011), no. 1, 477-542. MR 2753607 (2012a:35368), https://doi.org/10.4007/annals.2011.173.1.10
  • [9] Antonio Córdoba, Diego Córdoba, and Francisco Gancedo, Porous media: the Muskat problem in three dimensions, Anal. PDE 6 (2013), no. 2, 447-497. MR 3071395, https://doi.org/10.2140/apde.2013.6.447
  • [10] Diego Córdoba and Francisco Gancedo, Contour dynamics of incompressible 3-D fluids in a porous medium with different densities, Comm. Math. Phys. 273 (2007), no. 2, 445-471. MR 2318314 (2008e:76056), https://doi.org/10.1007/s00220-007-0246-y
  • [11] Daniel Coutand and Steve Shkoller, On the finite-time splash and splat singularities for the 3-D free-surface Euler equations, Comm. Math. Phys. 325 (2014), no. 1, 143-183. MR 3147437, https://doi.org/10.1007/s00220-013-1855-2
  • [12] Daniel Coutand and Steve Shkoller, On the impossibility of finite-time splash singularities for vortex sheets.
    arXiv:1407.1479v1, 2014.
  • [13] Joachim Escher and Bogdan-Vasile Matioc, On the parabolicity of the Muskat problem: well-posedness, fingering, and stability results, Z. Anal. Anwend. 30 (2011), no. 2, 193-218. MR 2793001 (2012h:35154), https://doi.org/10.4171/ZAA/1431
  • [14] Charles Fefferman, Alexandru D. Ionescu, and Victor Lie,
    On the absence of ``splash'' singularities in the case of two-fluids interfaces.
    arXiv:1312.2917v2, 2013.
  • [15] Francisco Gancedo and Robert M. Strain, Absence of splash singularities for surface quasi-geostrophic sharp fronts and the Muskat problem, Proc. Natl. Acad. Sci. USA 111 (2014), no. 2, 635-639. MR 3181769, https://doi.org/10.1073/pnas.1320554111
  • [16] Javier Gómez-Serrano and Rafael Granero-Belinchón, On turning waves for the inhomogeneous Muskat problem: a computer-assisted proof, Nonlinearity 27 (2014), no. 6, 1471-1498. MR 3215843, https://doi.org/10.1088/0951-7715/27/6/1471
  • [17] Rafael Granero-Belinchón, Global existence for the confined Muskat problem, SIAM J. Math. Anal. 46 (2014), no. 2, 1651-1680. MR 3196945, https://doi.org/10.1137/130912529
  • [18] Tosio Kato and Gustavo Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), no. 7, 891-907. MR 951744 (90f:35162), https://doi.org/10.1002/cpa.3160410704
  • [19] Morris Muskat, Two fluid systems in porous media. The encroachment of water into an oil sand, J. Appl. Phys. (5):250-264, 1934.
  • [20] Lord Rayleigh, On the instability of jets, Proc. London Math. Soc. S1-10, no. 1, 4. MR 1576197, https://doi.org/10.1112/plms/s1-10.1.4
  • [21] P. G. Saffman and Geoffrey Taylor, The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid, Proc. Roy. Soc. London. Ser. A 245 (1958), 312-329. (2 plates). MR 0097227 (20 #3697)
  • [22] Michael Siegel, Russel E. Caflisch, and Sam Howison, Global existence, singular solutions, and ill-posedness for the Muskat problem, Comm. Pure Appl. Math. 57 (2004), no. 10, 1374-1411. MR 2070208 (2007f:35235), https://doi.org/10.1002/cpa.20040

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35Q35

Retrieve articles in all journals with MSC (2010): 35Q35


Additional Information

Diego Córdoba
Affiliation: Instituto de Ciencias Matemáticas, Consejo Superior de Investigaciones Cientificas, Nicolás Cabrera, 13-15, 28059 Madrid, Spain
Email: dcg@icmat.es

Tania Pernas-Castaño
Affiliation: Instituto de Ciencias Matemáticas, Consejo Superior de Investigaciones Cientificas, Nicolás Cabrera, 13-15, 28059 Madrid, Spain
Email: tania.pernas@icmat.es

DOI: https://doi.org/10.1090/tran6688
Received by editor(s): September 2, 2014
Received by editor(s) in revised form: January 22, 2015
Published electronically: April 14, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society